This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | |- B = ( Base ` G ) |
|
| lsmless2.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmless1x | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> ( R .(+) U ) C_ ( T .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | |- B = ( Base ` G ) |
|
| 2 | lsmless2.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | ssrexv | |- ( R C_ T -> ( E. y e. R E. z e. U x = ( y ( +g ` G ) z ) -> E. y e. T E. z e. U x = ( y ( +g ` G ) z ) ) ) |
|
| 4 | 3 | adantl | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> ( E. y e. R E. z e. U x = ( y ( +g ` G ) z ) -> E. y e. T E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 5 | simpl1 | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> G e. V ) |
|
| 6 | simpr | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> R C_ T ) |
|
| 7 | simpl2 | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> T C_ B ) |
|
| 8 | 6 7 | sstrd | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> R C_ B ) |
| 9 | simpl3 | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> U C_ B ) |
|
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | 1 10 2 | lsmelvalx | |- ( ( G e. V /\ R C_ B /\ U C_ B ) -> ( x e. ( R .(+) U ) <-> E. y e. R E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 12 | 5 8 9 11 | syl3anc | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> ( x e. ( R .(+) U ) <-> E. y e. R E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 13 | 1 10 2 | lsmelvalx | |- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( x e. ( T .(+) U ) <-> E. y e. T E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 14 | 13 | adantr | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> ( x e. ( T .(+) U ) <-> E. y e. T E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 15 | 4 12 14 | 3imtr4d | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> ( x e. ( R .(+) U ) -> x e. ( T .(+) U ) ) ) |
| 16 | 15 | ssrdv | |- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ R C_ T ) -> ( R .(+) U ) C_ ( T .(+) U ) ) |