This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | |- B = ( Base ` G ) |
|
| lsmless2.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmless2x | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> ( R .(+) T ) C_ ( R .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | |- B = ( Base ` G ) |
|
| 2 | lsmless2.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | ssrexv | |- ( T C_ U -> ( E. z e. T x = ( y ( +g ` G ) z ) -> E. z e. U x = ( y ( +g ` G ) z ) ) ) |
|
| 4 | 3 | reximdv | |- ( T C_ U -> ( E. y e. R E. z e. T x = ( y ( +g ` G ) z ) -> E. y e. R E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 5 | 4 | adantl | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> ( E. y e. R E. z e. T x = ( y ( +g ` G ) z ) -> E. y e. R E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 6 | simpl1 | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> G e. V ) |
|
| 7 | simpl2 | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> R C_ B ) |
|
| 8 | simpr | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> T C_ U ) |
|
| 9 | simpl3 | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> U C_ B ) |
|
| 10 | 8 9 | sstrd | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> T C_ B ) |
| 11 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 12 | 1 11 2 | lsmelvalx | |- ( ( G e. V /\ R C_ B /\ T C_ B ) -> ( x e. ( R .(+) T ) <-> E. y e. R E. z e. T x = ( y ( +g ` G ) z ) ) ) |
| 13 | 6 7 10 12 | syl3anc | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> ( x e. ( R .(+) T ) <-> E. y e. R E. z e. T x = ( y ( +g ` G ) z ) ) ) |
| 14 | 1 11 2 | lsmelvalx | |- ( ( G e. V /\ R C_ B /\ U C_ B ) -> ( x e. ( R .(+) U ) <-> E. y e. R E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 15 | 14 | adantr | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> ( x e. ( R .(+) U ) <-> E. y e. R E. z e. U x = ( y ( +g ` G ) z ) ) ) |
| 16 | 5 13 15 | 3imtr4d | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> ( x e. ( R .(+) T ) -> x e. ( R .(+) U ) ) ) |
| 17 | 16 | ssrdv | |- ( ( ( G e. V /\ R C_ B /\ U C_ B ) /\ T C_ U ) -> ( R .(+) T ) C_ ( R .(+) U ) ) |