This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmdisj.o | |- .0. = ( 0g ` G ) |
||
| lsmdisjr.i | |- ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) |
||
| Assertion | lsmdisjr | |- ( ph -> ( ( S i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmdisj.o | |- .0. = ( 0g ` G ) |
|
| 6 | lsmdisjr.i | |- ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) |
|
| 7 | incom | |- ( S i^i ( T .(+) U ) ) = ( ( T .(+) U ) i^i S ) |
|
| 8 | 7 6 | eqtr3id | |- ( ph -> ( ( T .(+) U ) i^i S ) = { .0. } ) |
| 9 | 1 3 4 2 5 8 | lsmdisj | |- ( ph -> ( ( T i^i S ) = { .0. } /\ ( U i^i S ) = { .0. } ) ) |
| 10 | incom | |- ( T i^i S ) = ( S i^i T ) |
|
| 11 | 10 | eqeq1i | |- ( ( T i^i S ) = { .0. } <-> ( S i^i T ) = { .0. } ) |
| 12 | incom | |- ( U i^i S ) = ( S i^i U ) |
|
| 13 | 12 | eqeq1i | |- ( ( U i^i S ) = { .0. } <-> ( S i^i U ) = { .0. } ) |
| 14 | 11 13 | anbi12i | |- ( ( ( T i^i S ) = { .0. } /\ ( U i^i S ) = { .0. } ) <-> ( ( S i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) |
| 15 | 9 14 | sylib | |- ( ph -> ( ( S i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) |