This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for subgroup sum. (Contributed by NM, 26-Sep-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmcom.s | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsm4 | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( ( Q .(+) R ) .(+) ( T .(+) U ) ) = ( ( Q .(+) T ) .(+) ( R .(+) U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcom.s | |- .(+) = ( LSSum ` G ) |
|
| 2 | simp1 | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> G e. Abel ) |
|
| 3 | simp2r | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> R e. ( SubGrp ` G ) ) |
|
| 4 | simp3l | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> T e. ( SubGrp ` G ) ) |
|
| 5 | 1 | lsmcom | |- ( ( G e. Abel /\ R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> ( R .(+) T ) = ( T .(+) R ) ) |
| 6 | 2 3 4 5 | syl3anc | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( R .(+) T ) = ( T .(+) R ) ) |
| 7 | 6 | oveq2d | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( Q .(+) ( R .(+) T ) ) = ( Q .(+) ( T .(+) R ) ) ) |
| 8 | simp2l | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> Q e. ( SubGrp ` G ) ) |
|
| 9 | 1 | lsmass | |- ( ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> ( ( Q .(+) R ) .(+) T ) = ( Q .(+) ( R .(+) T ) ) ) |
| 10 | 8 3 4 9 | syl3anc | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( ( Q .(+) R ) .(+) T ) = ( Q .(+) ( R .(+) T ) ) ) |
| 11 | 1 | lsmass | |- ( ( Q e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) -> ( ( Q .(+) T ) .(+) R ) = ( Q .(+) ( T .(+) R ) ) ) |
| 12 | 8 4 3 11 | syl3anc | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( ( Q .(+) T ) .(+) R ) = ( Q .(+) ( T .(+) R ) ) ) |
| 13 | 7 10 12 | 3eqtr4d | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( ( Q .(+) R ) .(+) T ) = ( ( Q .(+) T ) .(+) R ) ) |
| 14 | 13 | oveq1d | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( ( ( Q .(+) R ) .(+) T ) .(+) U ) = ( ( ( Q .(+) T ) .(+) R ) .(+) U ) ) |
| 15 | 1 | lsmsubg2 | |- ( ( G e. Abel /\ Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) -> ( Q .(+) R ) e. ( SubGrp ` G ) ) |
| 16 | 2 8 3 15 | syl3anc | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( Q .(+) R ) e. ( SubGrp ` G ) ) |
| 17 | simp3r | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> U e. ( SubGrp ` G ) ) |
|
| 18 | 1 | lsmass | |- ( ( ( Q .(+) R ) e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( ( Q .(+) R ) .(+) T ) .(+) U ) = ( ( Q .(+) R ) .(+) ( T .(+) U ) ) ) |
| 19 | 16 4 17 18 | syl3anc | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( ( ( Q .(+) R ) .(+) T ) .(+) U ) = ( ( Q .(+) R ) .(+) ( T .(+) U ) ) ) |
| 20 | 1 | lsmsubg2 | |- ( ( G e. Abel /\ Q e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> ( Q .(+) T ) e. ( SubGrp ` G ) ) |
| 21 | 2 8 4 20 | syl3anc | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( Q .(+) T ) e. ( SubGrp ` G ) ) |
| 22 | 1 | lsmass | |- ( ( ( Q .(+) T ) e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( ( Q .(+) T ) .(+) R ) .(+) U ) = ( ( Q .(+) T ) .(+) ( R .(+) U ) ) ) |
| 23 | 21 3 17 22 | syl3anc | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( ( ( Q .(+) T ) .(+) R ) .(+) U ) = ( ( Q .(+) T ) .(+) ( R .(+) U ) ) ) |
| 24 | 14 19 23 | 3eqtr3d | |- ( ( G e. Abel /\ ( Q e. ( SubGrp ` G ) /\ R e. ( SubGrp ` G ) ) /\ ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) ) -> ( ( Q .(+) R ) .(+) ( T .(+) U ) ) = ( ( Q .(+) T ) .(+) ( R .(+) U ) ) ) |