This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for subgroup sum. (Contributed by NM, 26-Sep-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmcom.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsm4 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcom.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | simp1 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝐺 ∈ Abel ) | |
| 3 | simp2r | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | simp3l | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | 1 | lsmcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑅 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑅 ) ) |
| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑅 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑅 ) ) |
| 7 | 6 | oveq2d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
| 8 | simp2l | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 9 | 1 | lsmass | ⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) ) |
| 10 | 8 3 4 9 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( 𝑄 ⊕ ( 𝑅 ⊕ 𝑇 ) ) ) |
| 11 | 1 | lsmass | ⊢ ( ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
| 12 | 8 4 3 11 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) = ( 𝑄 ⊕ ( 𝑇 ⊕ 𝑅 ) ) ) |
| 13 | 7 10 12 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ) |
| 14 | 13 | oveq1d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) ) |
| 15 | 1 | lsmsubg2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 | 2 8 3 15 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 | simp3r | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 18 | 1 | lsmass | ⊢ ( ( ( 𝑄 ⊕ 𝑅 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 19 | 16 4 17 18 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑅 ) ⊕ 𝑇 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 20 | 1 | lsmsubg2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 | 2 8 4 20 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 22 | 1 | lsmass | ⊢ ( ( ( 𝑄 ⊕ 𝑇 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |
| 23 | 21 3 17 22 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( ( 𝑄 ⊕ 𝑇 ) ⊕ 𝑅 ) ⊕ 𝑈 ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |
| 24 | 14 19 23 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑄 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑅 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ( ( 𝑄 ⊕ 𝑅 ) ⊕ ( 𝑇 ⊕ 𝑈 ) ) = ( ( 𝑄 ⊕ 𝑇 ) ⊕ ( 𝑅 ⊕ 𝑈 ) ) ) |