This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lower bound on the difference of logs. (Contributed by Mario Carneiro, 3-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdiflbnd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) ≤ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) | |
| 2 | rpge0 | ⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 ) | |
| 3 | 1 2 | ge0p1rpd | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 4 | 3 | rprecred | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 5 | 1red | ⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℝ ) | |
| 6 | 0le1 | ⊢ 0 ≤ 1 | |
| 7 | 6 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 1 ) |
| 8 | 5 3 7 | divge0d | ⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ ( 1 / ( 𝐴 + 1 ) ) ) |
| 9 | id | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) | |
| 10 | 5 9 | ltaddrp2d | ⊢ ( 𝐴 ∈ ℝ+ → 1 < ( 𝐴 + 1 ) ) |
| 11 | 1 5 | readdcld | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℂ ) |
| 13 | 12 | mulridd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) · 1 ) = ( 𝐴 + 1 ) ) |
| 14 | 10 13 | breqtrrd | ⊢ ( 𝐴 ∈ ℝ+ → 1 < ( ( 𝐴 + 1 ) · 1 ) ) |
| 15 | 5 5 3 | ltdivmuld | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 1 / ( 𝐴 + 1 ) ) < 1 ↔ 1 < ( ( 𝐴 + 1 ) · 1 ) ) ) |
| 16 | 14 15 | mpbird | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) < 1 ) |
| 17 | 4 8 16 | eflegeo | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) ) |
| 18 | 5 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℂ ) |
| 19 | 3 | rpne0d | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ≠ 0 ) |
| 20 | 12 18 12 19 | divsubdird | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) − 1 ) / ( 𝐴 + 1 ) ) = ( ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) − ( 1 / ( 𝐴 + 1 ) ) ) ) |
| 21 | 1 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
| 22 | 21 18 | pncand | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 23 | 22 | oveq1d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) − 1 ) / ( 𝐴 + 1 ) ) = ( 𝐴 / ( 𝐴 + 1 ) ) ) |
| 24 | 12 19 | dividd | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) = 1 ) |
| 25 | 24 | oveq1d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) − ( 1 / ( 𝐴 + 1 ) ) ) = ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) |
| 26 | 20 23 25 | 3eqtr3rd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) = ( 𝐴 / ( 𝐴 + 1 ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) = ( 1 / ( 𝐴 / ( 𝐴 + 1 ) ) ) ) |
| 28 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 29 | 21 12 28 19 | recdivd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 / ( 𝐴 + 1 ) ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) ) |
| 30 | 27 29 | eqtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) ) |
| 31 | 17 30 | breqtrd | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( ( 𝐴 + 1 ) / 𝐴 ) ) |
| 32 | 4 | rpefcld | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ∈ ℝ+ ) |
| 33 | 3 9 | rpdivcld | ⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / 𝐴 ) ∈ ℝ+ ) |
| 34 | 32 33 | logled | ⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( ( 𝐴 + 1 ) / 𝐴 ) ↔ ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) ) ) |
| 35 | 31 34 | mpbid | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) ) |
| 36 | 4 | relogefd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) = ( 1 / ( 𝐴 + 1 ) ) ) |
| 37 | 3 9 | relogdivd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| 38 | 35 36 37 | 3brtr3d | ⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) ≤ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |