This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lnophmi . (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnophmlem.1 | |- A e. ~H |
|
| lnophmlem.2 | |- B e. ~H |
||
| lnophmlem.3 | |- T e. LinOp |
||
| lnophmlem.4 | |- A. x e. ~H ( x .ih ( T ` x ) ) e. RR |
||
| Assertion | lnophmlem2 | |- ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnophmlem.1 | |- A e. ~H |
|
| 2 | lnophmlem.2 | |- B e. ~H |
|
| 3 | lnophmlem.3 | |- T e. LinOp |
|
| 4 | lnophmlem.4 | |- A. x e. ~H ( x .ih ( T ` x ) ) e. RR |
|
| 5 | 3 | lnopfi | |- T : ~H --> ~H |
| 6 | 5 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. ~H ) |
| 7 | 1 6 | ax-mp | |- ( T ` A ) e. ~H |
| 8 | 5 | ffvelcdmi | |- ( B e. ~H -> ( T ` B ) e. ~H ) |
| 9 | 2 8 | ax-mp | |- ( T ` B ) e. ~H |
| 10 | 2 7 1 9 | polid2i | |- ( B .ih ( T ` A ) ) = ( ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) / 4 ) |
| 11 | 2 1 | hvcomi | |- ( B +h A ) = ( A +h B ) |
| 12 | 9 7 | hvcomi | |- ( ( T ` B ) +h ( T ` A ) ) = ( ( T ` A ) +h ( T ` B ) ) |
| 13 | 3 | lnopaddi | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) |
| 14 | 1 2 13 | mp2an | |- ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) |
| 15 | 12 14 | eqtr4i | |- ( ( T ` B ) +h ( T ` A ) ) = ( T ` ( A +h B ) ) |
| 16 | 11 15 | oveq12i | |- ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) = ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) |
| 17 | 2 1 9 7 | hisubcomi | |- ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) = ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) |
| 18 | 3 | lnopsubi | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) ) |
| 19 | 1 2 18 | mp2an | |- ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) |
| 20 | 19 | oveq2i | |- ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) = ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) |
| 21 | 17 20 | eqtr4i | |- ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) = ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) |
| 22 | 16 21 | oveq12i | |- ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) = ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) |
| 23 | ax-icn | |- _i e. CC |
|
| 24 | 23 2 | hvmulcli | |- ( _i .h B ) e. ~H |
| 25 | 1 24 | hvsubcli | |- ( A -h ( _i .h B ) ) e. ~H |
| 26 | 5 | ffvelcdmi | |- ( ( A -h ( _i .h B ) ) e. ~H -> ( T ` ( A -h ( _i .h B ) ) ) e. ~H ) |
| 27 | 25 26 | ax-mp | |- ( T ` ( A -h ( _i .h B ) ) ) e. ~H |
| 28 | 23 23 25 27 | his35i | |- ( ( _i .h ( A -h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) |
| 29 | 23 1 24 | hvsubdistr1i | |- ( _i .h ( A -h ( _i .h B ) ) ) = ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) |
| 30 | 23 1 | hvmulcli | |- ( _i .h A ) e. ~H |
| 31 | 23 24 | hvmulcli | |- ( _i .h ( _i .h B ) ) e. ~H |
| 32 | 30 31 | hvsubvali | |- ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( -u 1 .h ( _i .h ( _i .h B ) ) ) ) |
| 33 | 23 23 2 | hvmulassi | |- ( ( _i x. _i ) .h B ) = ( _i .h ( _i .h B ) ) |
| 34 | 33 | oveq2i | |- ( -u 1 .h ( ( _i x. _i ) .h B ) ) = ( -u 1 .h ( _i .h ( _i .h B ) ) ) |
| 35 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 36 | 35 | oveq2i | |- ( -u 1 x. ( _i x. _i ) ) = ( -u 1 x. -u 1 ) |
| 37 | ax-1cn | |- 1 e. CC |
|
| 38 | 37 37 | mul2negi | |- ( -u 1 x. -u 1 ) = ( 1 x. 1 ) |
| 39 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 40 | 36 38 39 | 3eqtri | |- ( -u 1 x. ( _i x. _i ) ) = 1 |
| 41 | 40 | oveq1i | |- ( ( -u 1 x. ( _i x. _i ) ) .h B ) = ( 1 .h B ) |
| 42 | neg1cn | |- -u 1 e. CC |
|
| 43 | 23 23 | mulcli | |- ( _i x. _i ) e. CC |
| 44 | 42 43 2 | hvmulassi | |- ( ( -u 1 x. ( _i x. _i ) ) .h B ) = ( -u 1 .h ( ( _i x. _i ) .h B ) ) |
| 45 | ax-hvmulid | |- ( B e. ~H -> ( 1 .h B ) = B ) |
|
| 46 | 2 45 | ax-mp | |- ( 1 .h B ) = B |
| 47 | 41 44 46 | 3eqtr3i | |- ( -u 1 .h ( ( _i x. _i ) .h B ) ) = B |
| 48 | 34 47 | eqtr3i | |- ( -u 1 .h ( _i .h ( _i .h B ) ) ) = B |
| 49 | 48 | oveq2i | |- ( ( _i .h A ) +h ( -u 1 .h ( _i .h ( _i .h B ) ) ) ) = ( ( _i .h A ) +h B ) |
| 50 | 32 49 | eqtri | |- ( ( _i .h A ) -h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h B ) |
| 51 | 30 2 | hvcomi | |- ( ( _i .h A ) +h B ) = ( B +h ( _i .h A ) ) |
| 52 | 29 50 51 | 3eqtri | |- ( _i .h ( A -h ( _i .h B ) ) ) = ( B +h ( _i .h A ) ) |
| 53 | 52 | fveq2i | |- ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( T ` ( B +h ( _i .h A ) ) ) |
| 54 | 3 | lnopmuli | |- ( ( _i e. CC /\ ( A -h ( _i .h B ) ) e. ~H ) -> ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) |
| 55 | 23 25 54 | mp2an | |- ( T ` ( _i .h ( A -h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) |
| 56 | 3 | lnopaddmuli | |- ( ( _i e. CC /\ B e. ~H /\ A e. ~H ) -> ( T ` ( B +h ( _i .h A ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) |
| 57 | 23 2 1 56 | mp3an | |- ( T ` ( B +h ( _i .h A ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) |
| 58 | 53 55 57 | 3eqtr3i | |- ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) = ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) |
| 59 | 52 58 | oveq12i | |- ( ( _i .h ( A -h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) |
| 60 | cji | |- ( * ` _i ) = -u _i |
|
| 61 | 60 | oveq2i | |- ( _i x. ( * ` _i ) ) = ( _i x. -u _i ) |
| 62 | 23 23 | mulneg2i | |- ( _i x. -u _i ) = -u ( _i x. _i ) |
| 63 | 35 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 64 | negneg1e1 | |- -u -u 1 = 1 |
|
| 65 | 63 64 | eqtri | |- -u ( _i x. _i ) = 1 |
| 66 | 61 62 65 | 3eqtri | |- ( _i x. ( * ` _i ) ) = 1 |
| 67 | 66 | oveq1i | |- ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( 1 x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) |
| 68 | 25 1 3 4 | lnophmlem1 | |- ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) e. RR |
| 69 | 68 | recni | |- ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) e. CC |
| 70 | 69 | mullidi | |- ( 1 x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) |
| 71 | 67 70 | eqtri | |- ( ( _i x. ( * ` _i ) ) x. ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) |
| 72 | 28 59 71 | 3eqtr3i | |- ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) |
| 73 | 23 7 | hvmulcli | |- ( _i .h ( T ` A ) ) e. ~H |
| 74 | 2 30 9 73 | hisubcomi | |- ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( ( _i .h A ) -h B ) .ih ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) |
| 75 | 35 | oveq1i | |- ( ( _i x. _i ) .h B ) = ( -u 1 .h B ) |
| 76 | 33 75 | eqtr3i | |- ( _i .h ( _i .h B ) ) = ( -u 1 .h B ) |
| 77 | 76 | oveq2i | |- ( ( _i .h A ) +h ( _i .h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( -u 1 .h B ) ) |
| 78 | 23 1 24 | hvdistr1i | |- ( _i .h ( A +h ( _i .h B ) ) ) = ( ( _i .h A ) +h ( _i .h ( _i .h B ) ) ) |
| 79 | 30 2 | hvsubvali | |- ( ( _i .h A ) -h B ) = ( ( _i .h A ) +h ( -u 1 .h B ) ) |
| 80 | 77 78 79 | 3eqtr4i | |- ( _i .h ( A +h ( _i .h B ) ) ) = ( ( _i .h A ) -h B ) |
| 81 | 80 | fveq2i | |- ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( T ` ( ( _i .h A ) -h B ) ) |
| 82 | 1 24 | hvaddcli | |- ( A +h ( _i .h B ) ) e. ~H |
| 83 | 3 | lnopmuli | |- ( ( _i e. CC /\ ( A +h ( _i .h B ) ) e. ~H ) -> ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) |
| 84 | 23 82 83 | mp2an | |- ( T ` ( _i .h ( A +h ( _i .h B ) ) ) ) = ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) |
| 85 | 3 | lnopmulsubi | |- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( _i .h A ) -h B ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) |
| 86 | 23 1 2 85 | mp3an | |- ( T ` ( ( _i .h A ) -h B ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) |
| 87 | 81 84 86 | 3eqtr3i | |- ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) = ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) |
| 88 | 80 87 | oveq12i | |- ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( ( _i .h A ) -h B ) .ih ( ( _i .h ( T ` A ) ) -h ( T ` B ) ) ) |
| 89 | 74 88 | eqtr4i | |- ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) |
| 90 | 5 | ffvelcdmi | |- ( ( A +h ( _i .h B ) ) e. ~H -> ( T ` ( A +h ( _i .h B ) ) ) e. ~H ) |
| 91 | 82 90 | ax-mp | |- ( T ` ( A +h ( _i .h B ) ) ) e. ~H |
| 92 | 23 23 82 91 | his35i | |- ( ( _i .h ( A +h ( _i .h B ) ) ) .ih ( _i .h ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) |
| 93 | 66 | oveq1i | |- ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( 1 x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) |
| 94 | 82 1 3 4 | lnophmlem1 | |- ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. RR |
| 95 | 94 | recni | |- ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. CC |
| 96 | 95 | mullidi | |- ( 1 x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) |
| 97 | 93 96 | eqtri | |- ( ( _i x. ( * ` _i ) ) x. ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) |
| 98 | 89 92 97 | 3eqtri | |- ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) |
| 99 | 72 98 | oveq12i | |- ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) = ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) |
| 100 | 99 | oveq2i | |- ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) = ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) |
| 101 | 22 100 | oveq12i | |- ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) |
| 102 | 101 | oveq1i | |- ( ( ( ( ( B +h A ) .ih ( ( T ` B ) +h ( T ` A ) ) ) - ( ( B -h A ) .ih ( ( T ` B ) -h ( T ` A ) ) ) ) + ( _i x. ( ( ( B +h ( _i .h A ) ) .ih ( ( T ` B ) +h ( _i .h ( T ` A ) ) ) ) - ( ( B -h ( _i .h A ) ) .ih ( ( T ` B ) -h ( _i .h ( T ` A ) ) ) ) ) ) ) / 4 ) = ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) |
| 103 | 10 102 | eqtri | |- ( B .ih ( T ` A ) ) = ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) |
| 104 | 103 | fveq2i | |- ( * ` ( B .ih ( T ` A ) ) ) = ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) |
| 105 | 4ne0 | |- 4 =/= 0 |
|
| 106 | 1 2 | hvaddcli | |- ( A +h B ) e. ~H |
| 107 | 106 1 3 4 | lnophmlem1 | |- ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) e. RR |
| 108 | 1 2 | hvsubcli | |- ( A -h B ) e. ~H |
| 109 | 108 1 3 4 | lnophmlem1 | |- ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) e. RR |
| 110 | 107 109 | resubcli | |- ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. RR |
| 111 | 110 | recni | |- ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. CC |
| 112 | 68 94 | resubcli | |- ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR |
| 113 | 112 | recni | |- ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. CC |
| 114 | 23 113 | mulcli | |- ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) e. CC |
| 115 | 111 114 | addcli | |- ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) e. CC |
| 116 | 4re | |- 4 e. RR |
|
| 117 | 116 | recni | |- 4 e. CC |
| 118 | 115 117 | cjdivi | |- ( 4 =/= 0 -> ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) ) |
| 119 | 105 118 | ax-mp | |- ( * ` ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) / 4 ) ) = ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) |
| 120 | cjreim | |- ( ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) e. RR /\ ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR ) -> ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) |
|
| 121 | 110 112 120 | mp2an | |- ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) |
| 122 | 82 2 3 4 | lnophmlem1 | |- ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) e. RR |
| 123 | 68 122 | resubcli | |- ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. RR |
| 124 | 123 | recni | |- ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) e. CC |
| 125 | 23 124 | mulcli | |- ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) e. CC |
| 126 | 111 125 | negsubi | |- ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) - ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) |
| 127 | 121 126 | eqtr4i | |- ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) |
| 128 | 23 113 | mulneg2i | |- ( _i x. -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) |
| 129 | 69 95 | negsubdi2i | |- -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) |
| 130 | 129 | oveq2i | |- ( _i x. -u ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) |
| 131 | 128 130 | eqtr3i | |- -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) |
| 132 | 131 | oveq2i | |- ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + -u ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) ) |
| 133 | 14 | oveq2i | |- ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) = ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) |
| 134 | 133 20 | oveq12i | |- ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) = ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) |
| 135 | 3 | lnopaddmuli | |- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) |
| 136 | 23 1 2 135 | mp3an | |- ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) |
| 137 | 136 | oveq2i | |- ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) = ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) |
| 138 | 3 | lnopsubmuli | |- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) |
| 139 | 23 1 2 138 | mp3an | |- ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) |
| 140 | 139 | oveq2i | |- ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) = ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) |
| 141 | 137 140 | oveq12i | |- ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) |
| 142 | 141 | oveq2i | |- ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) |
| 143 | 134 142 | oveq12i | |- ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) |
| 144 | 127 132 143 | 3eqtri | |- ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) = ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) |
| 145 | cjre | |- ( 4 e. RR -> ( * ` 4 ) = 4 ) |
|
| 146 | 116 145 | ax-mp | |- ( * ` 4 ) = 4 |
| 147 | 144 146 | oveq12i | |- ( ( * ` ( ( ( ( A +h B ) .ih ( T ` ( A +h B ) ) ) - ( ( A -h B ) .ih ( T ` ( A -h B ) ) ) ) + ( _i x. ( ( ( A -h ( _i .h B ) ) .ih ( T ` ( A -h ( _i .h B ) ) ) ) - ( ( A +h ( _i .h B ) ) .ih ( T ` ( A +h ( _i .h B ) ) ) ) ) ) ) ) / ( * ` 4 ) ) = ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) |
| 148 | 104 119 147 | 3eqtrri | |- ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) = ( * ` ( B .ih ( T ` A ) ) ) |
| 149 | 1 9 2 7 | polid2i | |- ( A .ih ( T ` B ) ) = ( ( ( ( ( A +h B ) .ih ( ( T ` A ) +h ( T ` B ) ) ) - ( ( A -h B ) .ih ( ( T ` A ) -h ( T ` B ) ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) ) ) ) / 4 ) |
| 150 | 7 2 | his1i | |- ( ( T ` A ) .ih B ) = ( * ` ( B .ih ( T ` A ) ) ) |
| 151 | 148 149 150 | 3eqtr4i | |- ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) |