This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnopl.1 | |- T e. LinOp |
|
| Assertion | lnopmulsubi | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) -h C ) ) = ( ( A .h ( T ` B ) ) -h ( T ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopl.1 | |- T e. LinOp |
|
| 2 | hvmulcl | |- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
|
| 3 | 1 | lnopsubi | |- ( ( ( A .h B ) e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) -h C ) ) = ( ( T ` ( A .h B ) ) -h ( T ` C ) ) ) |
| 4 | 2 3 | stoic3 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) -h C ) ) = ( ( T ` ( A .h B ) ) -h ( T ` C ) ) ) |
| 5 | 1 | lnopmuli | |- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) ) |
| 6 | 5 | 3adant3 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) ) |
| 7 | 6 | oveq1d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( T ` ( A .h B ) ) -h ( T ` C ) ) = ( ( A .h ( T ` B ) ) -h ( T ` C ) ) ) |
| 8 | 4 7 | eqtrd | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( ( A .h B ) -h C ) ) = ( ( A .h ( T ` B ) ) -h ( T ` C ) ) ) |