This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is Hermitian if x .ih ( Tx ) takes only real values. Remark in ReedSimon p. 195. (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnophm.1 | |- T e. LinOp |
|
| lnophm.2 | |- A. x e. ~H ( x .ih ( T ` x ) ) e. RR |
||
| Assertion | lnophmi | |- T e. HrmOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnophm.1 | |- T e. LinOp |
|
| 2 | lnophm.2 | |- A. x e. ~H ( x .ih ( T ` x ) ) e. RR |
|
| 3 | 1 | lnopfi | |- T : ~H --> ~H |
| 4 | oveq1 | |- ( y = if ( y e. ~H , y , 0h ) -> ( y .ih ( T ` z ) ) = ( if ( y e. ~H , y , 0h ) .ih ( T ` z ) ) ) |
|
| 5 | fveq2 | |- ( y = if ( y e. ~H , y , 0h ) -> ( T ` y ) = ( T ` if ( y e. ~H , y , 0h ) ) ) |
|
| 6 | 5 | oveq1d | |- ( y = if ( y e. ~H , y , 0h ) -> ( ( T ` y ) .ih z ) = ( ( T ` if ( y e. ~H , y , 0h ) ) .ih z ) ) |
| 7 | 4 6 | eqeq12d | |- ( y = if ( y e. ~H , y , 0h ) -> ( ( y .ih ( T ` z ) ) = ( ( T ` y ) .ih z ) <-> ( if ( y e. ~H , y , 0h ) .ih ( T ` z ) ) = ( ( T ` if ( y e. ~H , y , 0h ) ) .ih z ) ) ) |
| 8 | fveq2 | |- ( z = if ( z e. ~H , z , 0h ) -> ( T ` z ) = ( T ` if ( z e. ~H , z , 0h ) ) ) |
|
| 9 | 8 | oveq2d | |- ( z = if ( z e. ~H , z , 0h ) -> ( if ( y e. ~H , y , 0h ) .ih ( T ` z ) ) = ( if ( y e. ~H , y , 0h ) .ih ( T ` if ( z e. ~H , z , 0h ) ) ) ) |
| 10 | oveq2 | |- ( z = if ( z e. ~H , z , 0h ) -> ( ( T ` if ( y e. ~H , y , 0h ) ) .ih z ) = ( ( T ` if ( y e. ~H , y , 0h ) ) .ih if ( z e. ~H , z , 0h ) ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( z = if ( z e. ~H , z , 0h ) -> ( ( if ( y e. ~H , y , 0h ) .ih ( T ` z ) ) = ( ( T ` if ( y e. ~H , y , 0h ) ) .ih z ) <-> ( if ( y e. ~H , y , 0h ) .ih ( T ` if ( z e. ~H , z , 0h ) ) ) = ( ( T ` if ( y e. ~H , y , 0h ) ) .ih if ( z e. ~H , z , 0h ) ) ) ) |
| 12 | ifhvhv0 | |- if ( y e. ~H , y , 0h ) e. ~H |
|
| 13 | ifhvhv0 | |- if ( z e. ~H , z , 0h ) e. ~H |
|
| 14 | 12 13 1 2 | lnophmlem2 | |- ( if ( y e. ~H , y , 0h ) .ih ( T ` if ( z e. ~H , z , 0h ) ) ) = ( ( T ` if ( y e. ~H , y , 0h ) ) .ih if ( z e. ~H , z , 0h ) ) |
| 15 | 7 11 14 | dedth2h | |- ( ( y e. ~H /\ z e. ~H ) -> ( y .ih ( T ` z ) ) = ( ( T ` y ) .ih z ) ) |
| 16 | 15 | rgen2 | |- A. y e. ~H A. z e. ~H ( y .ih ( T ` z ) ) = ( ( T ` y ) .ih z ) |
| 17 | elhmop | |- ( T e. HrmOp <-> ( T : ~H --> ~H /\ A. y e. ~H A. z e. ~H ( y .ih ( T ` z ) ) = ( ( T ` y ) .ih z ) ) ) |
|
| 18 | 3 16 17 | mpbir2an | |- T e. HrmOp |