This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnoadd.1 | |- X = ( BaseSet ` U ) |
|
| lnoadd.5 | |- G = ( +v ` U ) |
||
| lnoadd.6 | |- H = ( +v ` W ) |
||
| lnoadd.7 | |- L = ( U LnOp W ) |
||
| Assertion | lnoadd | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( A G B ) ) = ( ( T ` A ) H ( T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnoadd.1 | |- X = ( BaseSet ` U ) |
|
| 2 | lnoadd.5 | |- G = ( +v ` U ) |
|
| 3 | lnoadd.6 | |- H = ( +v ` W ) |
|
| 4 | lnoadd.7 | |- L = ( U LnOp W ) |
|
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 7 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 8 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 9 | 1 6 2 3 7 8 4 | lnolin | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( 1 e. CC /\ A e. X /\ B e. X ) ) -> ( T ` ( ( 1 ( .sOLD ` U ) A ) G B ) ) = ( ( 1 ( .sOLD ` W ) ( T ` A ) ) H ( T ` B ) ) ) |
| 10 | 5 9 | mp3anr1 | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( ( 1 ( .sOLD ` U ) A ) G B ) ) = ( ( 1 ( .sOLD ` W ) ( T ` A ) ) H ( T ` B ) ) ) |
| 11 | simp1 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> U e. NrmCVec ) |
|
| 12 | simpl | |- ( ( A e. X /\ B e. X ) -> A e. X ) |
|
| 13 | 1 7 | nvsid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 ( .sOLD ` U ) A ) = A ) |
| 14 | 11 12 13 | syl2an | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( 1 ( .sOLD ` U ) A ) = A ) |
| 15 | 14 | fvoveq1d | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( ( 1 ( .sOLD ` U ) A ) G B ) ) = ( T ` ( A G B ) ) ) |
| 16 | simpl2 | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> W e. NrmCVec ) |
|
| 17 | 1 6 4 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> ( BaseSet ` W ) ) |
| 18 | ffvelcdm | |- ( ( T : X --> ( BaseSet ` W ) /\ A e. X ) -> ( T ` A ) e. ( BaseSet ` W ) ) |
|
| 19 | 17 12 18 | syl2an | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` A ) e. ( BaseSet ` W ) ) |
| 20 | 6 8 | nvsid | |- ( ( W e. NrmCVec /\ ( T ` A ) e. ( BaseSet ` W ) ) -> ( 1 ( .sOLD ` W ) ( T ` A ) ) = ( T ` A ) ) |
| 21 | 16 19 20 | syl2anc | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( 1 ( .sOLD ` W ) ( T ` A ) ) = ( T ` A ) ) |
| 22 | 21 | oveq1d | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( ( 1 ( .sOLD ` W ) ( T ` A ) ) H ( T ` B ) ) = ( ( T ` A ) H ( T ` B ) ) ) |
| 23 | 10 15 22 | 3eqtr3d | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( A G B ) ) = ( ( T ` A ) H ( T ` B ) ) ) |