This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnoval.1 | |- X = ( BaseSet ` U ) |
|
| lnoval.2 | |- Y = ( BaseSet ` W ) |
||
| lnoval.3 | |- G = ( +v ` U ) |
||
| lnoval.4 | |- H = ( +v ` W ) |
||
| lnoval.5 | |- R = ( .sOLD ` U ) |
||
| lnoval.6 | |- S = ( .sOLD ` W ) |
||
| lnoval.7 | |- L = ( U LnOp W ) |
||
| Assertion | lnolin | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnoval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | lnoval.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | lnoval.3 | |- G = ( +v ` U ) |
|
| 4 | lnoval.4 | |- H = ( +v ` W ) |
|
| 5 | lnoval.5 | |- R = ( .sOLD ` U ) |
|
| 6 | lnoval.6 | |- S = ( .sOLD ` W ) |
|
| 7 | lnoval.7 | |- L = ( U LnOp W ) |
|
| 8 | 1 2 3 4 5 6 7 | islno | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. L <-> ( T : X --> Y /\ A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) ) ) |
| 9 | 8 | biimp3a | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T : X --> Y /\ A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) ) |
| 10 | 9 | simprd | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) |
| 11 | oveq1 | |- ( u = A -> ( u R w ) = ( A R w ) ) |
|
| 12 | 11 | fvoveq1d | |- ( u = A -> ( T ` ( ( u R w ) G t ) ) = ( T ` ( ( A R w ) G t ) ) ) |
| 13 | oveq1 | |- ( u = A -> ( u S ( T ` w ) ) = ( A S ( T ` w ) ) ) |
|
| 14 | 13 | oveq1d | |- ( u = A -> ( ( u S ( T ` w ) ) H ( T ` t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( u = A -> ( ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) <-> ( T ` ( ( A R w ) G t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) ) ) |
| 16 | oveq2 | |- ( w = B -> ( A R w ) = ( A R B ) ) |
|
| 17 | 16 | fvoveq1d | |- ( w = B -> ( T ` ( ( A R w ) G t ) ) = ( T ` ( ( A R B ) G t ) ) ) |
| 18 | fveq2 | |- ( w = B -> ( T ` w ) = ( T ` B ) ) |
|
| 19 | 18 | oveq2d | |- ( w = B -> ( A S ( T ` w ) ) = ( A S ( T ` B ) ) ) |
| 20 | 19 | oveq1d | |- ( w = B -> ( ( A S ( T ` w ) ) H ( T ` t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) ) |
| 21 | 17 20 | eqeq12d | |- ( w = B -> ( ( T ` ( ( A R w ) G t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) <-> ( T ` ( ( A R B ) G t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) ) ) |
| 22 | oveq2 | |- ( t = C -> ( ( A R B ) G t ) = ( ( A R B ) G C ) ) |
|
| 23 | 22 | fveq2d | |- ( t = C -> ( T ` ( ( A R B ) G t ) ) = ( T ` ( ( A R B ) G C ) ) ) |
| 24 | fveq2 | |- ( t = C -> ( T ` t ) = ( T ` C ) ) |
|
| 25 | 24 | oveq2d | |- ( t = C -> ( ( A S ( T ` B ) ) H ( T ` t ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) |
| 26 | 23 25 | eqeq12d | |- ( t = C -> ( ( T ` ( ( A R B ) G t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) <-> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) ) |
| 27 | 15 21 26 | rspc3v | |- ( ( A e. CC /\ B e. X /\ C e. X ) -> ( A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) -> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) ) |
| 28 | 10 27 | mpan9 | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) |