This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnosub.1 | |- X = ( BaseSet ` U ) |
|
| lnosub.5 | |- M = ( -v ` U ) |
||
| lnosub.6 | |- N = ( -v ` W ) |
||
| lnosub.7 | |- L = ( U LnOp W ) |
||
| Assertion | lnosub | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( A M B ) ) = ( ( T ` A ) N ( T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnosub.1 | |- X = ( BaseSet ` U ) |
|
| 2 | lnosub.5 | |- M = ( -v ` U ) |
|
| 3 | lnosub.6 | |- N = ( -v ` W ) |
|
| 4 | lnosub.7 | |- L = ( U LnOp W ) |
|
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 7 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 8 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 9 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 10 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 11 | 1 6 7 8 9 10 4 | lnolin | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( -u 1 e. CC /\ B e. X /\ A e. X ) ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 12 | 5 11 | mp3anr1 | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( B e. X /\ A e. X ) ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 13 | 12 | ancom2s | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 14 | 1 7 9 2 | nvmval2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) |
| 15 | 14 | 3expb | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A M B ) = ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) |
| 16 | 15 | 3ad2antl1 | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( A M B ) = ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) |
| 17 | 16 | fveq2d | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( A M B ) ) = ( T ` ( ( -u 1 ( .sOLD ` U ) B ) ( +v ` U ) A ) ) ) |
| 18 | simpl2 | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> W e. NrmCVec ) |
|
| 19 | 1 6 4 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> ( BaseSet ` W ) ) |
| 20 | simpl | |- ( ( A e. X /\ B e. X ) -> A e. X ) |
|
| 21 | ffvelcdm | |- ( ( T : X --> ( BaseSet ` W ) /\ A e. X ) -> ( T ` A ) e. ( BaseSet ` W ) ) |
|
| 22 | 19 20 21 | syl2an | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` A ) e. ( BaseSet ` W ) ) |
| 23 | simpr | |- ( ( A e. X /\ B e. X ) -> B e. X ) |
|
| 24 | ffvelcdm | |- ( ( T : X --> ( BaseSet ` W ) /\ B e. X ) -> ( T ` B ) e. ( BaseSet ` W ) ) |
|
| 25 | 19 23 24 | syl2an | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` B ) e. ( BaseSet ` W ) ) |
| 26 | 6 8 10 3 | nvmval2 | |- ( ( W e. NrmCVec /\ ( T ` A ) e. ( BaseSet ` W ) /\ ( T ` B ) e. ( BaseSet ` W ) ) -> ( ( T ` A ) N ( T ` B ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 27 | 18 22 25 26 | syl3anc | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( ( T ` A ) N ( T ` B ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` B ) ) ( +v ` W ) ( T ` A ) ) ) |
| 28 | 13 17 27 | 3eqtr4d | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. X /\ B e. X ) ) -> ( T ` ( A M B ) ) = ( ( T ` A ) N ( T ` B ) ) ) |