This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property defining a continuous functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcnfn | |- ( T e. ContFn <-> ( T : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( t = T -> ( t ` w ) = ( T ` w ) ) |
|
| 2 | fveq1 | |- ( t = T -> ( t ` x ) = ( T ` x ) ) |
|
| 3 | 1 2 | oveq12d | |- ( t = T -> ( ( t ` w ) - ( t ` x ) ) = ( ( T ` w ) - ( T ` x ) ) ) |
| 4 | 3 | fveq2d | |- ( t = T -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) = ( abs ` ( ( T ` w ) - ( T ` x ) ) ) ) |
| 5 | 4 | breq1d | |- ( t = T -> ( ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y <-> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) |
| 6 | 5 | imbi2d | |- ( t = T -> ( ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) <-> ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
| 7 | 6 | rexralbidv | |- ( t = T -> ( E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) <-> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
| 8 | 7 | 2ralbidv | |- ( t = T -> ( A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) <-> A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
| 9 | df-cnfn | |- ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |
|
| 10 | 8 9 | elrab2 | |- ( T e. ContFn <-> ( T e. ( CC ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
| 11 | cnex | |- CC e. _V |
|
| 12 | ax-hilex | |- ~H e. _V |
|
| 13 | 11 12 | elmap | |- ( T e. ( CC ^m ~H ) <-> T : ~H --> CC ) |
| 14 | 13 | anbi1i | |- ( ( T e. ( CC ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) <-> ( T : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |
| 15 | 10 14 | bitri | |- ( T e. ContFn <-> ( T : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( T ` w ) - ( T ` x ) ) ) < y ) ) ) |