This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the property " F is a Cauchy sequence of metric D ". Part of Definition 1.4-3 of Kreyszig p. 28. The condition F C_ ( CC X. X ) allows to use objects more general than sequences when convenient; see the comment in df-lm . (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscau | |- ( D e. ( *Met ` X ) -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caufval | |- ( D e. ( *Met ` X ) -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) |
|
| 2 | 1 | eleq2d | |- ( D e. ( *Met ` X ) -> ( F e. ( Cau ` D ) <-> F e. { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) ) |
| 3 | reseq1 | |- ( f = F -> ( f |` ( ZZ>= ` k ) ) = ( F |` ( ZZ>= ` k ) ) ) |
|
| 4 | eqidd | |- ( f = F -> ( ZZ>= ` k ) = ( ZZ>= ` k ) ) |
|
| 5 | fveq1 | |- ( f = F -> ( f ` k ) = ( F ` k ) ) |
|
| 6 | 5 | oveq1d | |- ( f = F -> ( ( f ` k ) ( ball ` D ) x ) = ( ( F ` k ) ( ball ` D ) x ) ) |
| 7 | 3 4 6 | feq123d | |- ( f = F -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) <-> ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) |
| 8 | 7 | rexbidv | |- ( f = F -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) <-> E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) |
| 9 | 8 | ralbidv | |- ( f = F -> ( A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) <-> A. x e. RR+ E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) |
| 10 | 9 | elrab | |- ( F e. { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) |
| 11 | 2 10 | bitrdi | |- ( D e. ( *Met ` X ) -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. k e. ZZ ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( F ` k ) ( ball ` D ) x ) ) ) ) |