This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapfval.b | |- B = ( Base ` K ) |
|
| pmapfval.l | |- .<_ = ( le ` K ) |
||
| pmapfval.a | |- A = ( Atoms ` K ) |
||
| pmapfval.m | |- M = ( pmap ` K ) |
||
| Assertion | pmapval | |- ( ( K e. C /\ X e. B ) -> ( M ` X ) = { a e. A | a .<_ X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapfval.b | |- B = ( Base ` K ) |
|
| 2 | pmapfval.l | |- .<_ = ( le ` K ) |
|
| 3 | pmapfval.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapfval.m | |- M = ( pmap ` K ) |
|
| 5 | 1 2 3 4 | pmapfval | |- ( K e. C -> M = ( x e. B |-> { a e. A | a .<_ x } ) ) |
| 6 | 5 | fveq1d | |- ( K e. C -> ( M ` X ) = ( ( x e. B |-> { a e. A | a .<_ x } ) ` X ) ) |
| 7 | breq2 | |- ( x = X -> ( a .<_ x <-> a .<_ X ) ) |
|
| 8 | 7 | rabbidv | |- ( x = X -> { a e. A | a .<_ x } = { a e. A | a .<_ X } ) |
| 9 | eqid | |- ( x e. B |-> { a e. A | a .<_ x } ) = ( x e. B |-> { a e. A | a .<_ x } ) |
|
| 10 | 3 | fvexi | |- A e. _V |
| 11 | 10 | rabex | |- { a e. A | a .<_ X } e. _V |
| 12 | 8 9 11 | fvmpt | |- ( X e. B -> ( ( x e. B |-> { a e. A | a .<_ x } ) ` X ) = { a e. A | a .<_ X } ) |
| 13 | 6 12 | sylan9eq | |- ( ( K e. C /\ X e. B ) -> ( M ` X ) = { a e. A | a .<_ X } ) |