This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-limc | |- limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | climc | |- limCC |
|
| 1 | vf | |- f |
|
| 2 | cc | |- CC |
|
| 3 | cpm | |- ^pm |
|
| 4 | 2 2 3 | co | |- ( CC ^pm CC ) |
| 5 | vx | |- x |
|
| 6 | vy | |- y |
|
| 7 | ctopn | |- TopOpen |
|
| 8 | ccnfld | |- CCfld |
|
| 9 | 8 7 | cfv | |- ( TopOpen ` CCfld ) |
| 10 | vj | |- j |
|
| 11 | vz | |- z |
|
| 12 | 1 | cv | |- f |
| 13 | 12 | cdm | |- dom f |
| 14 | 5 | cv | |- x |
| 15 | 14 | csn | |- { x } |
| 16 | 13 15 | cun | |- ( dom f u. { x } ) |
| 17 | 11 | cv | |- z |
| 18 | 17 14 | wceq | |- z = x |
| 19 | 6 | cv | |- y |
| 20 | 17 12 | cfv | |- ( f ` z ) |
| 21 | 18 19 20 | cif | |- if ( z = x , y , ( f ` z ) ) |
| 22 | 11 16 21 | cmpt | |- ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) |
| 23 | 10 | cv | |- j |
| 24 | crest | |- |`t |
|
| 25 | 23 16 24 | co | |- ( j |`t ( dom f u. { x } ) ) |
| 26 | ccnp | |- CnP |
|
| 27 | 25 23 26 | co | |- ( ( j |`t ( dom f u. { x } ) ) CnP j ) |
| 28 | 14 27 | cfv | |- ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) |
| 29 | 22 28 | wcel | |- ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) |
| 30 | 29 10 9 | wsbc | |- [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) |
| 31 | 30 6 | cab | |- { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } |
| 32 | 1 5 4 2 31 | cmpo | |- ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |
| 33 | 0 32 | wceq | |- limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |