This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by OpenAI, 25-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| lidlsubcl.m | |- .- = ( -g ` R ) |
||
| Assertion | lidlsubcl | |- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. I /\ Y e. I ) ) -> ( X .- Y ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| 2 | lidlsubcl.m | |- .- = ( -g ` R ) |
|
| 3 | 1 | lidlsubg | |- ( ( R e. Ring /\ I e. U ) -> I e. ( SubGrp ` R ) ) |
| 4 | 3 | 3adant3 | |- ( ( R e. Ring /\ I e. U /\ ( X e. I /\ Y e. I ) ) -> I e. ( SubGrp ` R ) ) |
| 5 | simp3l | |- ( ( R e. Ring /\ I e. U /\ ( X e. I /\ Y e. I ) ) -> X e. I ) |
|
| 6 | simp3r | |- ( ( R e. Ring /\ I e. U /\ ( X e. I /\ Y e. I ) ) -> Y e. I ) |
|
| 7 | 2 | subgsubcl | |- ( ( I e. ( SubGrp ` R ) /\ X e. I /\ Y e. I ) -> ( X .- Y ) e. I ) |
| 8 | 4 5 6 7 | syl3anc | |- ( ( R e. Ring /\ I e. U /\ ( X e. I /\ Y e. I ) ) -> ( X .- Y ) e. I ) |
| 9 | 8 | 3expa | |- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. I /\ Y e. I ) ) -> ( X .- Y ) e. I ) |