This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 5-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmvneg | |- ( invg ` R ) = ( invg ` ( ringLMod ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
|
| 2 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 3 | 2 | a1i | |- ( T. -> ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) ) |
| 4 | rlmplusg | |- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
|
| 5 | 4 | a1i | |- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) ) |
| 6 | 5 | oveqd | |- ( ( T. /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` ( ringLMod ` R ) ) y ) ) |
| 7 | 1 3 6 | grpinvpropd | |- ( T. -> ( invg ` R ) = ( invg ` ( ringLMod ` R ) ) ) |
| 8 | 7 | mptru | |- ( invg ` R ) = ( invg ` ( ringLMod ` R ) ) |