This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledivge1le | |- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( A <_ B -> ( A / C ) <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divle1le | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) |
| 3 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 4 | 3 | adantr | |- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( A / B ) e. RR ) |
| 5 | 1red | |- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> 1 e. RR ) |
|
| 6 | rpre | |- ( C e. RR+ -> C e. RR ) |
|
| 7 | 6 | adantl | |- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> C e. RR ) |
| 8 | letr | |- ( ( ( A / B ) e. RR /\ 1 e. RR /\ C e. RR ) -> ( ( ( A / B ) <_ 1 /\ 1 <_ C ) -> ( A / B ) <_ C ) ) |
|
| 9 | 4 5 7 8 | syl3anc | |- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( ( A / B ) <_ 1 /\ 1 <_ C ) -> ( A / B ) <_ C ) ) |
| 10 | 9 | expd | |- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( A / B ) <_ 1 -> ( 1 <_ C -> ( A / B ) <_ C ) ) ) |
| 11 | 2 10 | sylbird | |- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( A <_ B -> ( 1 <_ C -> ( A / B ) <_ C ) ) ) |
| 12 | 11 | com23 | |- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( 1 <_ C -> ( A <_ B -> ( A / B ) <_ C ) ) ) |
| 13 | 12 | expimpd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( C e. RR+ /\ 1 <_ C ) -> ( A <_ B -> ( A / B ) <_ C ) ) ) |
| 14 | 13 | ex | |- ( A e. RR -> ( B e. RR+ -> ( ( C e. RR+ /\ 1 <_ C ) -> ( A <_ B -> ( A / B ) <_ C ) ) ) ) |
| 15 | 14 | 3imp1 | |- ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A / B ) <_ C ) |
| 16 | simp1 | |- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> A e. RR ) |
|
| 17 | 6 | adantr | |- ( ( C e. RR+ /\ 1 <_ C ) -> C e. RR ) |
| 18 | 0lt1 | |- 0 < 1 |
|
| 19 | 0red | |- ( C e. RR+ -> 0 e. RR ) |
|
| 20 | 1red | |- ( C e. RR+ -> 1 e. RR ) |
|
| 21 | ltletr | |- ( ( 0 e. RR /\ 1 e. RR /\ C e. RR ) -> ( ( 0 < 1 /\ 1 <_ C ) -> 0 < C ) ) |
|
| 22 | 19 20 6 21 | syl3anc | |- ( C e. RR+ -> ( ( 0 < 1 /\ 1 <_ C ) -> 0 < C ) ) |
| 23 | 18 22 | mpani | |- ( C e. RR+ -> ( 1 <_ C -> 0 < C ) ) |
| 24 | 23 | imp | |- ( ( C e. RR+ /\ 1 <_ C ) -> 0 < C ) |
| 25 | 17 24 | jca | |- ( ( C e. RR+ /\ 1 <_ C ) -> ( C e. RR /\ 0 < C ) ) |
| 26 | 25 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( C e. RR /\ 0 < C ) ) |
| 27 | rpregt0 | |- ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) |
|
| 28 | 27 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( B e. RR /\ 0 < B ) ) |
| 29 | 16 26 28 | 3jca | |- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) ) |
| 30 | 29 | adantr | |- ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) ) |
| 31 | lediv23 | |- ( ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / C ) <_ B <-> ( A / B ) <_ C ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( ( A / C ) <_ B <-> ( A / B ) <_ C ) ) |
| 33 | 15 32 | mpbird | |- ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A / C ) <_ B ) |
| 34 | 33 | ex | |- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( A <_ B -> ( A / C ) <_ B ) ) |