This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divle1le | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR /\ B e. RR+ ) -> A e. RR ) |
|
| 2 | rpregt0 | |- ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) |
|
| 3 | 2 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> ( B e. RR /\ 0 < B ) ) |
| 4 | 1re | |- 1 e. RR |
|
| 5 | 0lt1 | |- 0 < 1 |
|
| 6 | 4 5 | pm3.2i | |- ( 1 e. RR /\ 0 < 1 ) |
| 7 | 6 | a1i | |- ( ( A e. RR /\ B e. RR+ ) -> ( 1 e. RR /\ 0 < 1 ) ) |
| 8 | lediv23 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( ( A / B ) <_ 1 <-> ( A / 1 ) <_ B ) ) |
|
| 9 | 1 3 7 8 | syl3anc | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) <_ 1 <-> ( A / 1 ) <_ B ) ) |
| 10 | recn | |- ( A e. RR -> A e. CC ) |
|
| 11 | 10 | div1d | |- ( A e. RR -> ( A / 1 ) = A ) |
| 12 | 11 | adantr | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / 1 ) = A ) |
| 13 | 12 | breq1d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / 1 ) <_ B <-> A <_ B ) ) |
| 14 | 9 13 | bitrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) |