This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledivge1le | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐶 ) ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divle1le | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ 𝐵 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ 𝐵 ) ) |
| 3 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 5 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → 1 ∈ ℝ ) | |
| 6 | rpre | ⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 8 | letr | ⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 / 𝐵 ) ≤ 1 ∧ 1 ≤ 𝐶 ) → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) | |
| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 / 𝐵 ) ≤ 1 ∧ 1 ≤ 𝐶 ) → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) |
| 10 | 9 | expd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ 1 → ( 1 ≤ 𝐶 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) |
| 11 | 2 10 | sylbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 → ( 1 ≤ 𝐶 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) |
| 12 | 11 | com23 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝐶 ∈ ℝ+ ) → ( 1 ≤ 𝐶 → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) |
| 13 | 12 | expimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) |
| 14 | 13 | ex | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ+ → ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) ) ) |
| 15 | 14 | 3imp1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 / 𝐵 ) ≤ 𝐶 ) |
| 16 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → 𝐴 ∈ ℝ ) | |
| 17 | 6 | adantr | ⊢ ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → 𝐶 ∈ ℝ ) |
| 18 | 0lt1 | ⊢ 0 < 1 | |
| 19 | 0red | ⊢ ( 𝐶 ∈ ℝ+ → 0 ∈ ℝ ) | |
| 20 | 1red | ⊢ ( 𝐶 ∈ ℝ+ → 1 ∈ ℝ ) | |
| 21 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝐶 ) → 0 < 𝐶 ) ) | |
| 22 | 19 20 6 21 | syl3anc | ⊢ ( 𝐶 ∈ ℝ+ → ( ( 0 < 1 ∧ 1 ≤ 𝐶 ) → 0 < 𝐶 ) ) |
| 23 | 18 22 | mpani | ⊢ ( 𝐶 ∈ ℝ+ → ( 1 ≤ 𝐶 → 0 < 𝐶 ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → 0 < 𝐶 ) |
| 25 | 17 24 | jca | ⊢ ( ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
| 27 | rpregt0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 28 | 27 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 29 | 16 26 28 | 3jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ) |
| 31 | lediv23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐶 ) ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 / 𝐶 ) ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐶 ) ) |
| 33 | 15 32 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 / 𝐶 ) ≤ 𝐵 ) |
| 34 | 33 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ ( 𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 / 𝐶 ) ≤ 𝐵 ) ) |