This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leabs | |- ( A e. RR -> A <_ ( abs ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( A e. RR -> 0 e. RR ) |
|
| 2 | id | |- ( A e. RR -> A e. RR ) |
|
| 3 | absid | |- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
|
| 4 | eqcom | |- ( ( abs ` A ) = A <-> A = ( abs ` A ) ) |
|
| 5 | eqle | |- ( ( A e. RR /\ A = ( abs ` A ) ) -> A <_ ( abs ` A ) ) |
|
| 6 | 4 5 | sylan2b | |- ( ( A e. RR /\ ( abs ` A ) = A ) -> A <_ ( abs ` A ) ) |
| 7 | 3 6 | syldan | |- ( ( A e. RR /\ 0 <_ A ) -> A <_ ( abs ` A ) ) |
| 8 | recn | |- ( A e. RR -> A e. CC ) |
|
| 9 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 10 | 8 9 | syl | |- ( A e. RR -> 0 <_ ( abs ` A ) ) |
| 11 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 12 | 8 11 | syl | |- ( A e. RR -> ( abs ` A ) e. RR ) |
| 13 | 0re | |- 0 e. RR |
|
| 14 | letr | |- ( ( A e. RR /\ 0 e. RR /\ ( abs ` A ) e. RR ) -> ( ( A <_ 0 /\ 0 <_ ( abs ` A ) ) -> A <_ ( abs ` A ) ) ) |
|
| 15 | 13 14 | mp3an2 | |- ( ( A e. RR /\ ( abs ` A ) e. RR ) -> ( ( A <_ 0 /\ 0 <_ ( abs ` A ) ) -> A <_ ( abs ` A ) ) ) |
| 16 | 12 15 | mpdan | |- ( A e. RR -> ( ( A <_ 0 /\ 0 <_ ( abs ` A ) ) -> A <_ ( abs ` A ) ) ) |
| 17 | 10 16 | mpan2d | |- ( A e. RR -> ( A <_ 0 -> A <_ ( abs ` A ) ) ) |
| 18 | 17 | imp | |- ( ( A e. RR /\ A <_ 0 ) -> A <_ ( abs ` A ) ) |
| 19 | 1 2 7 18 | lecasei | |- ( A e. RR -> A <_ ( abs ` A ) ) |