This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a real number is either that number or its negative. (Contributed by NM, 27-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absor | |- ( A e. RR -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | letric | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A \/ A <_ 0 ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 <_ A \/ A <_ 0 ) ) |
| 4 | absid | |- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
|
| 5 | 4 | ex | |- ( A e. RR -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
| 6 | absnid | |- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
|
| 7 | 6 | ex | |- ( A e. RR -> ( A <_ 0 -> ( abs ` A ) = -u A ) ) |
| 8 | 5 7 | orim12d | |- ( A e. RR -> ( ( 0 <_ A \/ A <_ 0 ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) ) |
| 9 | 3 8 | mpd | |- ( A e. RR -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |