This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmass | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = ( N lcm ( M lcm P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orass | |- ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) <-> ( N = 0 \/ ( M = 0 \/ P = 0 ) ) ) |
|
| 2 | anass | |- ( ( ( N || x /\ M || x ) /\ P || x ) <-> ( N || x /\ ( M || x /\ P || x ) ) ) |
|
| 3 | 2 | rabbii | |- { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } = { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } |
| 4 | 3 | infeq1i | |- inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) = inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) |
| 5 | 1 4 | ifbieq2i | |- if ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) ) = if ( ( N = 0 \/ ( M = 0 \/ P = 0 ) ) , 0 , inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) ) |
| 6 | lcmcl | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N lcm M ) e. NN0 ) |
|
| 7 | 6 | 3adant3 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N lcm M ) e. NN0 ) |
| 8 | 7 | nn0zd | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N lcm M ) e. ZZ ) |
| 9 | simp3 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> P e. ZZ ) |
|
| 10 | lcmval | |- ( ( ( N lcm M ) e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = if ( ( ( N lcm M ) = 0 \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N lcm M ) || x /\ P || x ) } , RR , < ) ) ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = if ( ( ( N lcm M ) = 0 \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N lcm M ) || x /\ P || x ) } , RR , < ) ) ) |
| 12 | lcmeq0 | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N lcm M ) = 0 <-> ( N = 0 \/ M = 0 ) ) ) |
|
| 13 | 12 | 3adant3 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) = 0 <-> ( N = 0 \/ M = 0 ) ) ) |
| 14 | 13 | orbi1d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( ( N lcm M ) = 0 \/ P = 0 ) <-> ( ( N = 0 \/ M = 0 ) \/ P = 0 ) ) ) |
| 15 | 14 | bicomd | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) <-> ( ( N lcm M ) = 0 \/ P = 0 ) ) ) |
| 16 | nnz | |- ( x e. NN -> x e. ZZ ) |
|
| 17 | 16 | adantl | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> x e. ZZ ) |
| 18 | simp1 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> N e. ZZ ) |
|
| 19 | 18 | adantr | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> N e. ZZ ) |
| 20 | simpl2 | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> M e. ZZ ) |
|
| 21 | lcmdvdsb | |- ( ( x e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( N || x /\ M || x ) <-> ( N lcm M ) || x ) ) |
|
| 22 | 17 19 20 21 | syl3anc | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> ( ( N || x /\ M || x ) <-> ( N lcm M ) || x ) ) |
| 23 | 22 | anbi1d | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> ( ( ( N || x /\ M || x ) /\ P || x ) <-> ( ( N lcm M ) || x /\ P || x ) ) ) |
| 24 | 23 | rabbidva | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } = { x e. NN | ( ( N lcm M ) || x /\ P || x ) } ) |
| 25 | 24 | infeq1d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) = inf ( { x e. NN | ( ( N lcm M ) || x /\ P || x ) } , RR , < ) ) |
| 26 | 15 25 | ifbieq2d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> if ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) ) = if ( ( ( N lcm M ) = 0 \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N lcm M ) || x /\ P || x ) } , RR , < ) ) ) |
| 27 | 11 26 | eqtr4d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = if ( ( ( N = 0 \/ M = 0 ) \/ P = 0 ) , 0 , inf ( { x e. NN | ( ( N || x /\ M || x ) /\ P || x ) } , RR , < ) ) ) |
| 28 | lcmcl | |- ( ( M e. ZZ /\ P e. ZZ ) -> ( M lcm P ) e. NN0 ) |
|
| 29 | 28 | 3adant1 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( M lcm P ) e. NN0 ) |
| 30 | 29 | nn0zd | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( M lcm P ) e. ZZ ) |
| 31 | lcmval | |- ( ( N e. ZZ /\ ( M lcm P ) e. ZZ ) -> ( N lcm ( M lcm P ) ) = if ( ( N = 0 \/ ( M lcm P ) = 0 ) , 0 , inf ( { x e. NN | ( N || x /\ ( M lcm P ) || x ) } , RR , < ) ) ) |
|
| 32 | 18 30 31 | syl2anc | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N lcm ( M lcm P ) ) = if ( ( N = 0 \/ ( M lcm P ) = 0 ) , 0 , inf ( { x e. NN | ( N || x /\ ( M lcm P ) || x ) } , RR , < ) ) ) |
| 33 | lcmeq0 | |- ( ( M e. ZZ /\ P e. ZZ ) -> ( ( M lcm P ) = 0 <-> ( M = 0 \/ P = 0 ) ) ) |
|
| 34 | 33 | 3adant1 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( M lcm P ) = 0 <-> ( M = 0 \/ P = 0 ) ) ) |
| 35 | 34 | orbi2d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N = 0 \/ ( M lcm P ) = 0 ) <-> ( N = 0 \/ ( M = 0 \/ P = 0 ) ) ) ) |
| 36 | 35 | bicomd | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N = 0 \/ ( M = 0 \/ P = 0 ) ) <-> ( N = 0 \/ ( M lcm P ) = 0 ) ) ) |
| 37 | 9 | adantr | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> P e. ZZ ) |
| 38 | lcmdvdsb | |- ( ( x e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( M || x /\ P || x ) <-> ( M lcm P ) || x ) ) |
|
| 39 | 17 20 37 38 | syl3anc | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> ( ( M || x /\ P || x ) <-> ( M lcm P ) || x ) ) |
| 40 | 39 | anbi2d | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. NN ) -> ( ( N || x /\ ( M || x /\ P || x ) ) <-> ( N || x /\ ( M lcm P ) || x ) ) ) |
| 41 | 40 | rabbidva | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } = { x e. NN | ( N || x /\ ( M lcm P ) || x ) } ) |
| 42 | 41 | infeq1d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) = inf ( { x e. NN | ( N || x /\ ( M lcm P ) || x ) } , RR , < ) ) |
| 43 | 36 42 | ifbieq2d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> if ( ( N = 0 \/ ( M = 0 \/ P = 0 ) ) , 0 , inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) ) = if ( ( N = 0 \/ ( M lcm P ) = 0 ) , 0 , inf ( { x e. NN | ( N || x /\ ( M lcm P ) || x ) } , RR , < ) ) ) |
| 44 | 32 43 | eqtr4d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N lcm ( M lcm P ) ) = if ( ( N = 0 \/ ( M = 0 \/ P = 0 ) ) , 0 , inf ( { x e. NN | ( N || x /\ ( M || x /\ P || x ) ) } , RR , < ) ) ) |
| 45 | 5 27 44 | 3eqtr4a | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N lcm M ) lcm P ) = ( N lcm ( M lcm P ) ) ) |