This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015) (Revised by AV, 24-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsspropd.b1 | |- ( ph -> B = ( Base ` K ) ) |
|
| lsspropd.b2 | |- ( ph -> B = ( Base ` L ) ) |
||
| lsspropd.w | |- ( ph -> B C_ W ) |
||
| lsspropd.p | |- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| lsspropd.s1 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) e. W ) |
||
| lsspropd.s2 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
||
| lsspropd.p1 | |- ( ph -> P = ( Base ` ( Scalar ` K ) ) ) |
||
| lsspropd.p2 | |- ( ph -> P = ( Base ` ( Scalar ` L ) ) ) |
||
| lsppropd.v1 | |- ( ph -> K e. X ) |
||
| lsppropd.v2 | |- ( ph -> L e. Y ) |
||
| Assertion | lsppropd | |- ( ph -> ( LSpan ` K ) = ( LSpan ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsspropd.b1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | lsspropd.b2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | lsspropd.w | |- ( ph -> B C_ W ) |
|
| 4 | lsspropd.p | |- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 5 | lsspropd.s1 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) e. W ) |
|
| 6 | lsspropd.s2 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
|
| 7 | lsspropd.p1 | |- ( ph -> P = ( Base ` ( Scalar ` K ) ) ) |
|
| 8 | lsspropd.p2 | |- ( ph -> P = ( Base ` ( Scalar ` L ) ) ) |
|
| 9 | lsppropd.v1 | |- ( ph -> K e. X ) |
|
| 10 | lsppropd.v2 | |- ( ph -> L e. Y ) |
|
| 11 | 1 2 | eqtr3d | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 12 | 11 | pweqd | |- ( ph -> ~P ( Base ` K ) = ~P ( Base ` L ) ) |
| 13 | 1 2 3 4 5 6 7 8 | lsspropd | |- ( ph -> ( LSubSp ` K ) = ( LSubSp ` L ) ) |
| 14 | 13 | rabeqdv | |- ( ph -> { t e. ( LSubSp ` K ) | s C_ t } = { t e. ( LSubSp ` L ) | s C_ t } ) |
| 15 | 14 | inteqd | |- ( ph -> |^| { t e. ( LSubSp ` K ) | s C_ t } = |^| { t e. ( LSubSp ` L ) | s C_ t } ) |
| 16 | 12 15 | mpteq12dv | |- ( ph -> ( s e. ~P ( Base ` K ) |-> |^| { t e. ( LSubSp ` K ) | s C_ t } ) = ( s e. ~P ( Base ` L ) |-> |^| { t e. ( LSubSp ` L ) | s C_ t } ) ) |
| 17 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 18 | eqid | |- ( LSubSp ` K ) = ( LSubSp ` K ) |
|
| 19 | eqid | |- ( LSpan ` K ) = ( LSpan ` K ) |
|
| 20 | 17 18 19 | lspfval | |- ( K e. X -> ( LSpan ` K ) = ( s e. ~P ( Base ` K ) |-> |^| { t e. ( LSubSp ` K ) | s C_ t } ) ) |
| 21 | 9 20 | syl | |- ( ph -> ( LSpan ` K ) = ( s e. ~P ( Base ` K ) |-> |^| { t e. ( LSubSp ` K ) | s C_ t } ) ) |
| 22 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 23 | eqid | |- ( LSubSp ` L ) = ( LSubSp ` L ) |
|
| 24 | eqid | |- ( LSpan ` L ) = ( LSpan ` L ) |
|
| 25 | 22 23 24 | lspfval | |- ( L e. Y -> ( LSpan ` L ) = ( s e. ~P ( Base ` L ) |-> |^| { t e. ( LSubSp ` L ) | s C_ t } ) ) |
| 26 | 10 25 | syl | |- ( ph -> ( LSpan ` L ) = ( s e. ~P ( Base ` L ) |-> |^| { t e. ( LSubSp ` L ) | s C_ t } ) ) |
| 27 | 16 21 26 | 3eqtr4d | |- ( ph -> ( LSpan ` K ) = ( LSpan ` L ) ) |