This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqneltrrd.1 | |- ( ph -> A = B ) |
|
| eqneltrrd.2 | |- ( ph -> -. A e. C ) |
||
| Assertion | eqneltrrd | |- ( ph -> -. B e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrrd.1 | |- ( ph -> A = B ) |
|
| 2 | eqneltrrd.2 | |- ( ph -> -. A e. C ) |
|
| 3 | 1 | eqcomd | |- ( ph -> B = A ) |
| 4 | 3 2 | eqneltrd | |- ( ph -> -. B e. C ) |