This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsss.v | |- V = ( Base ` W ) |
|
| lbsss.j | |- J = ( LBasis ` W ) |
||
| lbssp.n | |- N = ( LSpan ` W ) |
||
| lbsind.f | |- F = ( Scalar ` W ) |
||
| lbsind.s | |- .x. = ( .s ` W ) |
||
| lbsind.k | |- K = ( Base ` F ) |
||
| lbsind.z | |- .0. = ( 0g ` F ) |
||
| Assertion | lbsind | |- ( ( ( B e. J /\ E e. B ) /\ ( A e. K /\ A =/= .0. ) ) -> -. ( A .x. E ) e. ( N ` ( B \ { E } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsss.v | |- V = ( Base ` W ) |
|
| 2 | lbsss.j | |- J = ( LBasis ` W ) |
|
| 3 | lbssp.n | |- N = ( LSpan ` W ) |
|
| 4 | lbsind.f | |- F = ( Scalar ` W ) |
|
| 5 | lbsind.s | |- .x. = ( .s ` W ) |
|
| 6 | lbsind.k | |- K = ( Base ` F ) |
|
| 7 | lbsind.z | |- .0. = ( 0g ` F ) |
|
| 8 | eldifsn | |- ( A e. ( K \ { .0. } ) <-> ( A e. K /\ A =/= .0. ) ) |
|
| 9 | elfvdm | |- ( B e. ( LBasis ` W ) -> W e. dom LBasis ) |
|
| 10 | 9 2 | eleq2s | |- ( B e. J -> W e. dom LBasis ) |
| 11 | 1 4 5 6 2 3 7 | islbs | |- ( W e. dom LBasis -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
| 12 | 10 11 | syl | |- ( B e. J -> ( B e. J <-> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) ) |
| 13 | 12 | ibi | |- ( B e. J -> ( B C_ V /\ ( N ` B ) = V /\ A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) ) |
| 14 | 13 | simp3d | |- ( B e. J -> A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) ) |
| 15 | oveq2 | |- ( x = E -> ( y .x. x ) = ( y .x. E ) ) |
|
| 16 | sneq | |- ( x = E -> { x } = { E } ) |
|
| 17 | 16 | difeq2d | |- ( x = E -> ( B \ { x } ) = ( B \ { E } ) ) |
| 18 | 17 | fveq2d | |- ( x = E -> ( N ` ( B \ { x } ) ) = ( N ` ( B \ { E } ) ) ) |
| 19 | 15 18 | eleq12d | |- ( x = E -> ( ( y .x. x ) e. ( N ` ( B \ { x } ) ) <-> ( y .x. E ) e. ( N ` ( B \ { E } ) ) ) ) |
| 20 | 19 | notbid | |- ( x = E -> ( -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) <-> -. ( y .x. E ) e. ( N ` ( B \ { E } ) ) ) ) |
| 21 | oveq1 | |- ( y = A -> ( y .x. E ) = ( A .x. E ) ) |
|
| 22 | 21 | eleq1d | |- ( y = A -> ( ( y .x. E ) e. ( N ` ( B \ { E } ) ) <-> ( A .x. E ) e. ( N ` ( B \ { E } ) ) ) ) |
| 23 | 22 | notbid | |- ( y = A -> ( -. ( y .x. E ) e. ( N ` ( B \ { E } ) ) <-> -. ( A .x. E ) e. ( N ` ( B \ { E } ) ) ) ) |
| 24 | 20 23 | rspc2v | |- ( ( E e. B /\ A e. ( K \ { .0. } ) ) -> ( A. x e. B A. y e. ( K \ { .0. } ) -. ( y .x. x ) e. ( N ` ( B \ { x } ) ) -> -. ( A .x. E ) e. ( N ` ( B \ { E } ) ) ) ) |
| 25 | 14 24 | syl5com | |- ( B e. J -> ( ( E e. B /\ A e. ( K \ { .0. } ) ) -> -. ( A .x. E ) e. ( N ` ( B \ { E } ) ) ) ) |
| 26 | 25 | impl | |- ( ( ( B e. J /\ E e. B ) /\ A e. ( K \ { .0. } ) ) -> -. ( A .x. E ) e. ( N ` ( B \ { E } ) ) ) |
| 27 | 8 26 | sylan2br | |- ( ( ( B e. J /\ E e. B ) /\ ( A e. K /\ A =/= .0. ) ) -> -. ( A .x. E ) e. ( N ` ( B \ { E } ) ) ) |