This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add join to both sides of a lattice ordering. ( chlej12i analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | |- B = ( Base ` K ) |
|
| latlej.l | |- .<_ = ( le ` K ) |
||
| latlej.j | |- .\/ = ( join ` K ) |
||
| Assertion | latjlej12 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .<_ Y /\ Z .<_ W ) -> ( X .\/ Z ) .<_ ( Y .\/ W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | |- B = ( Base ` K ) |
|
| 2 | latlej.l | |- .<_ = ( le ` K ) |
|
| 3 | latlej.j | |- .\/ = ( join ` K ) |
|
| 4 | simp1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> K e. Lat ) |
|
| 5 | simp2l | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> X e. B ) |
|
| 6 | simp2r | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> Y e. B ) |
|
| 7 | simp3l | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> Z e. B ) |
|
| 8 | 1 2 3 | latjlej1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( X .\/ Z ) .<_ ( Y .\/ Z ) ) ) |
| 9 | 4 5 6 7 8 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( X .<_ Y -> ( X .\/ Z ) .<_ ( Y .\/ Z ) ) ) |
| 10 | simp3r | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> W e. B ) |
|
| 11 | 1 2 3 | latjlej2 | |- ( ( K e. Lat /\ ( Z e. B /\ W e. B /\ Y e. B ) ) -> ( Z .<_ W -> ( Y .\/ Z ) .<_ ( Y .\/ W ) ) ) |
| 12 | 4 7 10 6 11 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Z .<_ W -> ( Y .\/ Z ) .<_ ( Y .\/ W ) ) ) |
| 13 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X .\/ Z ) e. B ) |
| 14 | 4 5 7 13 | syl3anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( X .\/ Z ) e. B ) |
| 15 | 1 3 | latjcl | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) e. B ) |
| 16 | 4 6 7 15 | syl3anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Y .\/ Z ) e. B ) |
| 17 | 1 3 | latjcl | |- ( ( K e. Lat /\ Y e. B /\ W e. B ) -> ( Y .\/ W ) e. B ) |
| 18 | 4 6 10 17 | syl3anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Y .\/ W ) e. B ) |
| 19 | 1 2 | lattr | |- ( ( K e. Lat /\ ( ( X .\/ Z ) e. B /\ ( Y .\/ Z ) e. B /\ ( Y .\/ W ) e. B ) ) -> ( ( ( X .\/ Z ) .<_ ( Y .\/ Z ) /\ ( Y .\/ Z ) .<_ ( Y .\/ W ) ) -> ( X .\/ Z ) .<_ ( Y .\/ W ) ) ) |
| 20 | 4 14 16 18 19 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( ( X .\/ Z ) .<_ ( Y .\/ Z ) /\ ( Y .\/ Z ) .<_ ( Y .\/ W ) ) -> ( X .\/ Z ) .<_ ( Y .\/ W ) ) ) |
| 21 | 9 12 20 | syl2and | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .<_ Y /\ Z .<_ W ) -> ( X .\/ Z ) .<_ ( Y .\/ W ) ) ) |