This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latledi.b | |- B = ( Base ` K ) |
|
| latledi.l | |- .<_ = ( le ` K ) |
||
| latledi.j | |- .\/ = ( join ` K ) |
||
| latledi.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latmlej11 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ ( X .\/ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latledi.b | |- B = ( Base ` K ) |
|
| 2 | latledi.l | |- .<_ = ( le ` K ) |
|
| 3 | latledi.j | |- .\/ = ( join ` K ) |
|
| 4 | latledi.m | |- ./\ = ( meet ` K ) |
|
| 5 | simpl | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
|
| 6 | 1 4 | latmcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 7 | 6 | 3adant3r3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) e. B ) |
| 8 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 9 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X .\/ Z ) e. B ) |
| 10 | 9 | 3adant3r2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ Z ) e. B ) |
| 11 | 1 2 4 | latmle1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) .<_ X ) |
| 12 | 11 | 3adant3r3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ X ) |
| 13 | 1 2 3 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> X .<_ ( X .\/ Z ) ) |
| 14 | 13 | 3adant3r2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X .<_ ( X .\/ Z ) ) |
| 15 | 1 2 5 7 8 10 12 14 | lattrd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ ( X .\/ Z ) ) |