This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice is distributive in one ordering direction. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledi | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A i^i B ) = ( if ( A e. CH , A , 0H ) i^i B ) ) |
|
| 2 | ineq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A i^i C ) = ( if ( A e. CH , A , 0H ) i^i C ) ) |
|
| 3 | 1 2 | oveq12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A i^i B ) vH ( A i^i C ) ) = ( ( if ( A e. CH , A , 0H ) i^i B ) vH ( if ( A e. CH , A , 0H ) i^i C ) ) ) |
| 4 | ineq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A i^i ( B vH C ) ) = ( if ( A e. CH , A , 0H ) i^i ( B vH C ) ) ) |
|
| 5 | 3 4 | sseq12d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) <-> ( ( if ( A e. CH , A , 0H ) i^i B ) vH ( if ( A e. CH , A , 0H ) i^i C ) ) C_ ( if ( A e. CH , A , 0H ) i^i ( B vH C ) ) ) ) |
| 6 | ineq2 | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) i^i B ) = ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) ) |
|
| 7 | 6 | oveq1d | |- ( B = if ( B e. CH , B , 0H ) -> ( ( if ( A e. CH , A , 0H ) i^i B ) vH ( if ( A e. CH , A , 0H ) i^i C ) ) = ( ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) vH ( if ( A e. CH , A , 0H ) i^i C ) ) ) |
| 8 | oveq1 | |- ( B = if ( B e. CH , B , 0H ) -> ( B vH C ) = ( if ( B e. CH , B , 0H ) vH C ) ) |
|
| 9 | 8 | ineq2d | |- ( B = if ( B e. CH , B , 0H ) -> ( if ( A e. CH , A , 0H ) i^i ( B vH C ) ) = ( if ( A e. CH , A , 0H ) i^i ( if ( B e. CH , B , 0H ) vH C ) ) ) |
| 10 | 7 9 | sseq12d | |- ( B = if ( B e. CH , B , 0H ) -> ( ( ( if ( A e. CH , A , 0H ) i^i B ) vH ( if ( A e. CH , A , 0H ) i^i C ) ) C_ ( if ( A e. CH , A , 0H ) i^i ( B vH C ) ) <-> ( ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) vH ( if ( A e. CH , A , 0H ) i^i C ) ) C_ ( if ( A e. CH , A , 0H ) i^i ( if ( B e. CH , B , 0H ) vH C ) ) ) ) |
| 11 | ineq2 | |- ( C = if ( C e. CH , C , 0H ) -> ( if ( A e. CH , A , 0H ) i^i C ) = ( if ( A e. CH , A , 0H ) i^i if ( C e. CH , C , 0H ) ) ) |
|
| 12 | 11 | oveq2d | |- ( C = if ( C e. CH , C , 0H ) -> ( ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) vH ( if ( A e. CH , A , 0H ) i^i C ) ) = ( ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) vH ( if ( A e. CH , A , 0H ) i^i if ( C e. CH , C , 0H ) ) ) ) |
| 13 | oveq2 | |- ( C = if ( C e. CH , C , 0H ) -> ( if ( B e. CH , B , 0H ) vH C ) = ( if ( B e. CH , B , 0H ) vH if ( C e. CH , C , 0H ) ) ) |
|
| 14 | 13 | ineq2d | |- ( C = if ( C e. CH , C , 0H ) -> ( if ( A e. CH , A , 0H ) i^i ( if ( B e. CH , B , 0H ) vH C ) ) = ( if ( A e. CH , A , 0H ) i^i ( if ( B e. CH , B , 0H ) vH if ( C e. CH , C , 0H ) ) ) ) |
| 15 | 12 14 | sseq12d | |- ( C = if ( C e. CH , C , 0H ) -> ( ( ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) vH ( if ( A e. CH , A , 0H ) i^i C ) ) C_ ( if ( A e. CH , A , 0H ) i^i ( if ( B e. CH , B , 0H ) vH C ) ) <-> ( ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) vH ( if ( A e. CH , A , 0H ) i^i if ( C e. CH , C , 0H ) ) ) C_ ( if ( A e. CH , A , 0H ) i^i ( if ( B e. CH , B , 0H ) vH if ( C e. CH , C , 0H ) ) ) ) ) |
| 16 | h0elch | |- 0H e. CH |
|
| 17 | 16 | elimel | |- if ( A e. CH , A , 0H ) e. CH |
| 18 | 16 | elimel | |- if ( B e. CH , B , 0H ) e. CH |
| 19 | 16 | elimel | |- if ( C e. CH , C , 0H ) e. CH |
| 20 | 17 18 19 | ledii | |- ( ( if ( A e. CH , A , 0H ) i^i if ( B e. CH , B , 0H ) ) vH ( if ( A e. CH , A , 0H ) i^i if ( C e. CH , C , 0H ) ) ) C_ ( if ( A e. CH , A , 0H ) i^i ( if ( B e. CH , B , 0H ) vH if ( C e. CH , C , 0H ) ) ) |
| 21 | 5 10 15 20 | dedth3h | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) ) ) |