This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rotate lattice join of 4 classes. (Contributed by NM, 11-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | |- B = ( Base ` K ) |
|
| latjass.j | |- .\/ = ( join ` K ) |
||
| Assertion | latj4rot | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ W ) ) = ( ( W .\/ X ) .\/ ( Y .\/ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | |- B = ( Base ` K ) |
|
| 2 | latjass.j | |- .\/ = ( join ` K ) |
|
| 3 | simp1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> K e. Lat ) |
|
| 4 | simp3l | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> Z e. B ) |
|
| 5 | simp3r | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> W e. B ) |
|
| 6 | 1 2 | latjcom | |- ( ( K e. Lat /\ Z e. B /\ W e. B ) -> ( Z .\/ W ) = ( W .\/ Z ) ) |
| 7 | 3 4 5 6 | syl3anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Z .\/ W ) = ( W .\/ Z ) ) |
| 8 | 7 | oveq2d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ W ) ) = ( ( X .\/ Y ) .\/ ( W .\/ Z ) ) ) |
| 9 | 5 4 | jca | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( W e. B /\ Z e. B ) ) |
| 10 | 1 2 | latj4 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( W e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ ( W .\/ Z ) ) = ( ( X .\/ W ) .\/ ( Y .\/ Z ) ) ) |
| 11 | 9 10 | syld3an3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ Y ) .\/ ( W .\/ Z ) ) = ( ( X .\/ W ) .\/ ( Y .\/ Z ) ) ) |
| 12 | simp2l | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> X e. B ) |
|
| 13 | 1 2 | latjcom | |- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X .\/ W ) = ( W .\/ X ) ) |
| 14 | 3 12 5 13 | syl3anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( X .\/ W ) = ( W .\/ X ) ) |
| 15 | 14 | oveq1d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ W ) .\/ ( Y .\/ Z ) ) = ( ( W .\/ X ) .\/ ( Y .\/ Z ) ) ) |
| 16 | 8 11 15 | 3eqtrd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ W ) ) = ( ( W .\/ X ) .\/ ( Y .\/ Z ) ) ) |