This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of lattice join of 4 classes. ( chj4 analog.) (Contributed by NM, 14-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | |- B = ( Base ` K ) |
|
| latjass.j | |- .\/ = ( join ` K ) |
||
| Assertion | latj4 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ W ) ) = ( ( X .\/ Z ) .\/ ( Y .\/ W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | |- B = ( Base ` K ) |
|
| 2 | latjass.j | |- .\/ = ( join ` K ) |
|
| 3 | simp1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> K e. Lat ) |
|
| 4 | simp2r | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> Y e. B ) |
|
| 5 | simp3l | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> Z e. B ) |
|
| 6 | simp3r | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> W e. B ) |
|
| 7 | 1 2 | latj12 | |- ( ( K e. Lat /\ ( Y e. B /\ Z e. B /\ W e. B ) ) -> ( Y .\/ ( Z .\/ W ) ) = ( Z .\/ ( Y .\/ W ) ) ) |
| 8 | 3 4 5 6 7 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Y .\/ ( Z .\/ W ) ) = ( Z .\/ ( Y .\/ W ) ) ) |
| 9 | 8 | oveq2d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( X .\/ ( Y .\/ ( Z .\/ W ) ) ) = ( X .\/ ( Z .\/ ( Y .\/ W ) ) ) ) |
| 10 | simp2l | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> X e. B ) |
|
| 11 | 1 2 | latjcl | |- ( ( K e. Lat /\ Z e. B /\ W e. B ) -> ( Z .\/ W ) e. B ) |
| 12 | 3 5 6 11 | syl3anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Z .\/ W ) e. B ) |
| 13 | 1 2 | latjass | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ ( Z .\/ W ) e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ W ) ) = ( X .\/ ( Y .\/ ( Z .\/ W ) ) ) ) |
| 14 | 3 10 4 12 13 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ W ) ) = ( X .\/ ( Y .\/ ( Z .\/ W ) ) ) ) |
| 15 | 1 2 | latjcl | |- ( ( K e. Lat /\ Y e. B /\ W e. B ) -> ( Y .\/ W ) e. B ) |
| 16 | 3 4 6 15 | syl3anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( Y .\/ W ) e. B ) |
| 17 | 1 2 | latjass | |- ( ( K e. Lat /\ ( X e. B /\ Z e. B /\ ( Y .\/ W ) e. B ) ) -> ( ( X .\/ Z ) .\/ ( Y .\/ W ) ) = ( X .\/ ( Z .\/ ( Y .\/ W ) ) ) ) |
| 18 | 3 10 5 16 17 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ Z ) .\/ ( Y .\/ W ) ) = ( X .\/ ( Z .\/ ( Y .\/ W ) ) ) ) |
| 19 | 9 14 18 | 3eqtr4d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B ) /\ ( Z e. B /\ W e. B ) ) -> ( ( X .\/ Y ) .\/ ( Z .\/ W ) ) = ( ( X .\/ Z ) .\/ ( Y .\/ W ) ) ) |