This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | |- B = ( Base ` K ) |
|
| latjass.j | |- .\/ = ( join ` K ) |
||
| Assertion | latjjdi | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y .\/ Z ) ) = ( ( X .\/ Y ) .\/ ( X .\/ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | |- B = ( Base ` K ) |
|
| 2 | latjass.j | |- .\/ = ( join ` K ) |
|
| 3 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 4 | 1 2 | latjidm | |- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) = X ) |
| 5 | 3 4 | syldan | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ X ) = X ) |
| 6 | 5 | oveq1d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ X ) .\/ ( Y .\/ Z ) ) = ( X .\/ ( Y .\/ Z ) ) ) |
| 7 | simpl | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
|
| 8 | simpr2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 9 | simpr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 10 | 1 2 | latj4 | |- ( ( K e. Lat /\ ( X e. B /\ X e. B ) /\ ( Y e. B /\ Z e. B ) ) -> ( ( X .\/ X ) .\/ ( Y .\/ Z ) ) = ( ( X .\/ Y ) .\/ ( X .\/ Z ) ) ) |
| 11 | 7 3 3 8 9 10 | syl122anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ X ) .\/ ( Y .\/ Z ) ) = ( ( X .\/ Y ) .\/ ( X .\/ Z ) ) ) |
| 12 | 6 11 | eqtr3d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y .\/ Z ) ) = ( ( X .\/ Y ) .\/ ( X .\/ Z ) ) ) |