This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap 1st and 2nd members of lattice join. ( chj12 analog.) (Contributed by NM, 4-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | |- B = ( Base ` K ) |
|
| latjass.j | |- .\/ = ( join ` K ) |
||
| Assertion | latj12 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y .\/ Z ) ) = ( Y .\/ ( X .\/ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | |- B = ( Base ` K ) |
|
| 2 | latjass.j | |- .\/ = ( join ` K ) |
|
| 3 | 1 2 | latjcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| 4 | 3 | 3adant3r3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| 5 | 4 | oveq1d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( Y .\/ X ) .\/ Z ) ) |
| 6 | 1 2 | latjass | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( X .\/ ( Y .\/ Z ) ) ) |
| 7 | simpl | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
|
| 8 | simpr2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 9 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 10 | simpr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 11 | 1 2 | latjass | |- ( ( K e. Lat /\ ( Y e. B /\ X e. B /\ Z e. B ) ) -> ( ( Y .\/ X ) .\/ Z ) = ( Y .\/ ( X .\/ Z ) ) ) |
| 12 | 7 8 9 10 11 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( Y .\/ X ) .\/ Z ) = ( Y .\/ ( X .\/ Z ) ) ) |
| 13 | 5 6 12 | 3eqtr3d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y .\/ Z ) ) = ( Y .\/ ( X .\/ Z ) ) ) |