This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap 1st and 2nd members of lattice join. ( chj12 analog.) (Contributed by NM, 4-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latjass.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latj12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ ( 𝑌 ∨ 𝑍 ) ) = ( 𝑌 ∨ ( 𝑋 ∨ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latjass.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
| 4 | 3 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ 𝑍 ) = ( ( 𝑌 ∨ 𝑋 ) ∨ 𝑍 ) ) |
| 6 | 1 2 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ 𝑍 ) = ( 𝑋 ∨ ( 𝑌 ∨ 𝑍 ) ) ) |
| 7 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 8 | simpr2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 9 | simpr1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 10 | simpr3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 11 | 1 2 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 ∨ 𝑋 ) ∨ 𝑍 ) = ( 𝑌 ∨ ( 𝑋 ∨ 𝑍 ) ) ) |
| 12 | 7 8 9 10 11 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 ∨ 𝑋 ) ∨ 𝑍 ) = ( 𝑌 ∨ ( 𝑋 ∨ 𝑍 ) ) ) |
| 13 | 5 6 12 | 3eqtr3d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ ( 𝑌 ∨ 𝑍 ) ) = ( 𝑌 ∨ ( 𝑋 ∨ 𝑍 ) ) ) |