This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in MegPav2002 p. 362. (Contributed by NM, 2-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjass.b | |- B = ( Base ` K ) |
|
| latjass.j | |- .\/ = ( join ` K ) |
||
| Assertion | latj32 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( X .\/ Z ) .\/ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjass.b | |- B = ( Base ` K ) |
|
| 2 | latjass.j | |- .\/ = ( join ` K ) |
|
| 3 | 1 2 | latjcom | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
| 4 | 3 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .\/ Z ) = ( Z .\/ Y ) ) |
| 5 | 4 | oveq2d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y .\/ Z ) ) = ( X .\/ ( Z .\/ Y ) ) ) |
| 6 | 1 2 | latjass | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( X .\/ ( Y .\/ Z ) ) ) |
| 7 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 8 | simpr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 9 | simpr2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 10 | 7 8 9 | 3jca | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X e. B /\ Z e. B /\ Y e. B ) ) |
| 11 | 1 2 | latjass | |- ( ( K e. Lat /\ ( X e. B /\ Z e. B /\ Y e. B ) ) -> ( ( X .\/ Z ) .\/ Y ) = ( X .\/ ( Z .\/ Y ) ) ) |
| 12 | 10 11 | syldan | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Z ) .\/ Y ) = ( X .\/ ( Z .\/ Y ) ) ) |
| 13 | 5 6 12 | 3eqtr4d | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) .\/ Z ) = ( ( X .\/ Z ) .\/ Y ) ) |