This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rearrangement of Hilbert lattice join. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chj12 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH ( B vH C ) ) = ( B vH ( A vH C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chjcom | |- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH B ) = ( B vH A ) ) |
| 3 | 2 | oveq1d | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A vH B ) vH C ) = ( ( B vH A ) vH C ) ) |
| 4 | chjass | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A vH B ) vH C ) = ( A vH ( B vH C ) ) ) |
|
| 5 | chjass | |- ( ( B e. CH /\ A e. CH /\ C e. CH ) -> ( ( B vH A ) vH C ) = ( B vH ( A vH C ) ) ) |
|
| 6 | 5 | 3com12 | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( B vH A ) vH C ) = ( B vH ( A vH C ) ) ) |
| 7 | 3 4 6 | 3eqtr3d | |- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( A vH ( B vH C ) ) = ( B vH ( A vH C ) ) ) |