This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The outer product of two vectors, expressed as | A >. <. B | in Dirac notation. See df-kb . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbfval | |- ( ( A e. ~H /\ B e. ~H ) -> ( A ketbra B ) = ( x e. ~H |-> ( ( x .ih B ) .h A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( y = A -> ( ( x .ih z ) .h y ) = ( ( x .ih z ) .h A ) ) |
|
| 2 | 1 | mpteq2dv | |- ( y = A -> ( x e. ~H |-> ( ( x .ih z ) .h y ) ) = ( x e. ~H |-> ( ( x .ih z ) .h A ) ) ) |
| 3 | oveq2 | |- ( z = B -> ( x .ih z ) = ( x .ih B ) ) |
|
| 4 | 3 | oveq1d | |- ( z = B -> ( ( x .ih z ) .h A ) = ( ( x .ih B ) .h A ) ) |
| 5 | 4 | mpteq2dv | |- ( z = B -> ( x e. ~H |-> ( ( x .ih z ) .h A ) ) = ( x e. ~H |-> ( ( x .ih B ) .h A ) ) ) |
| 6 | df-kb | |- ketbra = ( y e. ~H , z e. ~H |-> ( x e. ~H |-> ( ( x .ih z ) .h y ) ) ) |
|
| 7 | ax-hilex | |- ~H e. _V |
|
| 8 | 7 | mptex | |- ( x e. ~H |-> ( ( x .ih B ) .h A ) ) e. _V |
| 9 | 2 5 6 8 | ovmpo | |- ( ( A e. ~H /\ B e. ~H ) -> ( A ketbra B ) = ( x e. ~H |-> ( ( x .ih B ) .h A ) ) ) |