This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dirac bra-ket associative law <. A | B >. <. C | D >. = ( <. A | B >. <. C | ) | D >. . (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbass3 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bracl | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) e. CC ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` A ) ` B ) e. CC ) |
| 3 | brafn | |- ( C e. ~H -> ( bra ` C ) : ~H --> CC ) |
|
| 4 | 3 | ad2antrl | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( bra ` C ) : ~H --> CC ) |
| 5 | simprr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> D e. ~H ) |
|
| 6 | hfmval | |- ( ( ( ( bra ` A ) ` B ) e. CC /\ ( bra ` C ) : ~H --> CC /\ D e. ~H ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) = ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) ) |
|
| 7 | 2 4 5 6 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) = ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) ) |
| 8 | 7 | eqcomd | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) ) |