This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hfmmval | |- ( ( A e. CC /\ T : ~H --> CC ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | |- CC e. _V |
|
| 2 | ax-hilex | |- ~H e. _V |
|
| 3 | 1 2 | elmap | |- ( T e. ( CC ^m ~H ) <-> T : ~H --> CC ) |
| 4 | oveq1 | |- ( f = A -> ( f x. ( g ` x ) ) = ( A x. ( g ` x ) ) ) |
|
| 5 | 4 | mpteq2dv | |- ( f = A -> ( x e. ~H |-> ( f x. ( g ` x ) ) ) = ( x e. ~H |-> ( A x. ( g ` x ) ) ) ) |
| 6 | fveq1 | |- ( g = T -> ( g ` x ) = ( T ` x ) ) |
|
| 7 | 6 | oveq2d | |- ( g = T -> ( A x. ( g ` x ) ) = ( A x. ( T ` x ) ) ) |
| 8 | 7 | mpteq2dv | |- ( g = T -> ( x e. ~H |-> ( A x. ( g ` x ) ) ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |
| 9 | df-hfmul | |- .fn = ( f e. CC , g e. ( CC ^m ~H ) |-> ( x e. ~H |-> ( f x. ( g ` x ) ) ) ) |
|
| 10 | 2 | mptex | |- ( x e. ~H |-> ( A x. ( T ` x ) ) ) e. _V |
| 11 | 5 8 9 10 | ovmpo | |- ( ( A e. CC /\ T e. ( CC ^m ~H ) ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |
| 12 | 3 11 | sylan2br | |- ( ( A e. CC /\ T : ~H --> CC ) -> ( A .fn T ) = ( x e. ~H |-> ( A x. ( T ` x ) ) ) ) |