This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iunxdif2.1 | |- ( x = y -> C = D ) |
|
| Assertion | iunxdif2 | |- ( A. x e. A E. y e. ( A \ B ) C C_ D -> U_ y e. ( A \ B ) D = U_ x e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxdif2.1 | |- ( x = y -> C = D ) |
|
| 2 | iunss2 | |- ( A. x e. A E. y e. ( A \ B ) C C_ D -> U_ x e. A C C_ U_ y e. ( A \ B ) D ) |
|
| 3 | difss | |- ( A \ B ) C_ A |
|
| 4 | iunss1 | |- ( ( A \ B ) C_ A -> U_ y e. ( A \ B ) D C_ U_ y e. A D ) |
|
| 5 | 3 4 | ax-mp | |- U_ y e. ( A \ B ) D C_ U_ y e. A D |
| 6 | 1 | cbviunv | |- U_ x e. A C = U_ y e. A D |
| 7 | 5 6 | sseqtrri | |- U_ y e. ( A \ B ) D C_ U_ x e. A C |
| 8 | 2 7 | jctil | |- ( A. x e. A E. y e. ( A \ B ) C C_ D -> ( U_ y e. ( A \ B ) D C_ U_ x e. A C /\ U_ x e. A C C_ U_ y e. ( A \ B ) D ) ) |
| 9 | eqss | |- ( U_ y e. ( A \ B ) D = U_ x e. A C <-> ( U_ y e. ( A \ B ) D C_ U_ x e. A C /\ U_ x e. A C C_ U_ y e. ( A \ B ) D ) ) |
|
| 10 | 8 9 | sylibr | |- ( A. x e. A E. y e. ( A \ B ) C C_ D -> U_ y e. ( A \ B ) D = U_ x e. A C ) |