This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iuneq12df.1 | |- F/ x ph |
|
| iuneq12df.2 | |- F/_ x A |
||
| iuneq12df.3 | |- F/_ x B |
||
| iuneq12df.4 | |- ( ph -> A = B ) |
||
| iuneq12df.5 | |- ( ph -> C = D ) |
||
| Assertion | iuneq12df | |- ( ph -> U_ x e. A C = U_ x e. B D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12df.1 | |- F/ x ph |
|
| 2 | iuneq12df.2 | |- F/_ x A |
|
| 3 | iuneq12df.3 | |- F/_ x B |
|
| 4 | iuneq12df.4 | |- ( ph -> A = B ) |
|
| 5 | iuneq12df.5 | |- ( ph -> C = D ) |
|
| 6 | 5 | eleq2d | |- ( ph -> ( y e. C <-> y e. D ) ) |
| 7 | 1 2 3 4 6 | rexeqbid | |- ( ph -> ( E. x e. A y e. C <-> E. x e. B y e. D ) ) |
| 8 | 7 | alrimiv | |- ( ph -> A. y ( E. x e. A y e. C <-> E. x e. B y e. D ) ) |
| 9 | abbi | |- ( A. y ( E. x e. A y e. C <-> E. x e. B y e. D ) -> { y | E. x e. A y e. C } = { y | E. x e. B y e. D } ) |
|
| 10 | df-iun | |- U_ x e. A C = { y | E. x e. A y e. C } |
|
| 11 | df-iun | |- U_ x e. B D = { y | E. x e. B y e. D } |
|
| 12 | 9 10 11 | 3eqtr4g | |- ( A. y ( E. x e. A y e. C <-> E. x e. B y e. D ) -> U_ x e. A C = U_ x e. B D ) |
| 13 | 8 12 | syl | |- ( ph -> U_ x e. A C = U_ x e. B D ) |