This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgulm2.z | |- Z = ( ZZ>= ` M ) |
|
| itgulm2.m | |- ( ph -> M e. ZZ ) |
||
| itgulm2.l | |- ( ( ph /\ k e. Z ) -> ( x e. S |-> A ) e. L^1 ) |
||
| itgulm2.u | |- ( ph -> ( k e. Z |-> ( x e. S |-> A ) ) ( ~~>u ` S ) ( x e. S |-> B ) ) |
||
| itgulm2.s | |- ( ph -> ( vol ` S ) e. RR ) |
||
| Assertion | itgulm2 | |- ( ph -> ( ( x e. S |-> B ) e. L^1 /\ ( k e. Z |-> S. S A _d x ) ~~> S. S B _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgulm2.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | itgulm2.m | |- ( ph -> M e. ZZ ) |
|
| 3 | itgulm2.l | |- ( ( ph /\ k e. Z ) -> ( x e. S |-> A ) e. L^1 ) |
|
| 4 | itgulm2.u | |- ( ph -> ( k e. Z |-> ( x e. S |-> A ) ) ( ~~>u ` S ) ( x e. S |-> B ) ) |
|
| 5 | itgulm2.s | |- ( ph -> ( vol ` S ) e. RR ) |
|
| 6 | 3 | fmpttd | |- ( ph -> ( k e. Z |-> ( x e. S |-> A ) ) : Z --> L^1 ) |
| 7 | 1 2 6 4 5 | iblulm | |- ( ph -> ( x e. S |-> B ) e. L^1 ) |
| 8 | 1 2 6 4 5 | itgulm | |- ( ph -> ( n e. Z |-> S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) _d z ) ~~> S. S ( ( x e. S |-> B ) ` z ) _d z ) |
| 9 | nfcv | |- F/_ k S |
|
| 10 | nffvmpt1 | |- F/_ k ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) |
|
| 11 | nfcv | |- F/_ k z |
|
| 12 | 10 11 | nffv | |- F/_ k ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) |
| 13 | 9 12 | nfitg | |- F/_ k S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) _d z |
| 14 | nfcv | |- F/_ n S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) _d x |
|
| 15 | fveq2 | |- ( z = x -> ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) = ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` x ) ) |
|
| 16 | nfcv | |- F/_ x Z |
|
| 17 | nfmpt1 | |- F/_ x ( x e. S |-> A ) |
|
| 18 | 16 17 | nfmpt | |- F/_ x ( k e. Z |-> ( x e. S |-> A ) ) |
| 19 | nfcv | |- F/_ x n |
|
| 20 | 18 19 | nffv | |- F/_ x ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) |
| 21 | nfcv | |- F/_ x z |
|
| 22 | 20 21 | nffv | |- F/_ x ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) |
| 23 | nfcv | |- F/_ z ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` x ) |
|
| 24 | 15 22 23 | cbvitg | |- S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) _d z = S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` x ) _d x |
| 25 | fveq2 | |- ( n = k -> ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) = ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ) |
|
| 26 | 25 | fveq1d | |- ( n = k -> ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` x ) = ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) ) |
| 27 | 26 | adantr | |- ( ( n = k /\ x e. S ) -> ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` x ) = ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) ) |
| 28 | 27 | itgeq2dv | |- ( n = k -> S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` x ) _d x = S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) _d x ) |
| 29 | 24 28 | eqtrid | |- ( n = k -> S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) _d z = S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) _d x ) |
| 30 | 13 14 29 | cbvmpt | |- ( n e. Z |-> S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) _d z ) = ( k e. Z |-> S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) _d x ) |
| 31 | simplr | |- ( ( ( ph /\ k e. Z ) /\ x e. S ) -> k e. Z ) |
|
| 32 | ulmscl | |- ( ( k e. Z |-> ( x e. S |-> A ) ) ( ~~>u ` S ) ( x e. S |-> B ) -> S e. _V ) |
|
| 33 | mptexg | |- ( S e. _V -> ( x e. S |-> A ) e. _V ) |
|
| 34 | 4 32 33 | 3syl | |- ( ph -> ( x e. S |-> A ) e. _V ) |
| 35 | 34 | ad2antrr | |- ( ( ( ph /\ k e. Z ) /\ x e. S ) -> ( x e. S |-> A ) e. _V ) |
| 36 | eqid | |- ( k e. Z |-> ( x e. S |-> A ) ) = ( k e. Z |-> ( x e. S |-> A ) ) |
|
| 37 | 36 | fvmpt2 | |- ( ( k e. Z /\ ( x e. S |-> A ) e. _V ) -> ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) = ( x e. S |-> A ) ) |
| 38 | 31 35 37 | syl2anc | |- ( ( ( ph /\ k e. Z ) /\ x e. S ) -> ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) = ( x e. S |-> A ) ) |
| 39 | 38 | fveq1d | |- ( ( ( ph /\ k e. Z ) /\ x e. S ) -> ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) = ( ( x e. S |-> A ) ` x ) ) |
| 40 | simpr | |- ( ( ( ph /\ k e. Z ) /\ x e. S ) -> x e. S ) |
|
| 41 | 34 | ralrimivw | |- ( ph -> A. k e. Z ( x e. S |-> A ) e. _V ) |
| 42 | 36 | fnmpt | |- ( A. k e. Z ( x e. S |-> A ) e. _V -> ( k e. Z |-> ( x e. S |-> A ) ) Fn Z ) |
| 43 | 41 42 | syl | |- ( ph -> ( k e. Z |-> ( x e. S |-> A ) ) Fn Z ) |
| 44 | ulmf2 | |- ( ( ( k e. Z |-> ( x e. S |-> A ) ) Fn Z /\ ( k e. Z |-> ( x e. S |-> A ) ) ( ~~>u ` S ) ( x e. S |-> B ) ) -> ( k e. Z |-> ( x e. S |-> A ) ) : Z --> ( CC ^m S ) ) |
|
| 45 | 43 4 44 | syl2anc | |- ( ph -> ( k e. Z |-> ( x e. S |-> A ) ) : Z --> ( CC ^m S ) ) |
| 46 | 45 | fvmptelcdm | |- ( ( ph /\ k e. Z ) -> ( x e. S |-> A ) e. ( CC ^m S ) ) |
| 47 | elmapi | |- ( ( x e. S |-> A ) e. ( CC ^m S ) -> ( x e. S |-> A ) : S --> CC ) |
|
| 48 | 46 47 | syl | |- ( ( ph /\ k e. Z ) -> ( x e. S |-> A ) : S --> CC ) |
| 49 | 48 | fvmptelcdm | |- ( ( ( ph /\ k e. Z ) /\ x e. S ) -> A e. CC ) |
| 50 | eqid | |- ( x e. S |-> A ) = ( x e. S |-> A ) |
|
| 51 | 50 | fvmpt2 | |- ( ( x e. S /\ A e. CC ) -> ( ( x e. S |-> A ) ` x ) = A ) |
| 52 | 40 49 51 | syl2anc | |- ( ( ( ph /\ k e. Z ) /\ x e. S ) -> ( ( x e. S |-> A ) ` x ) = A ) |
| 53 | 39 52 | eqtrd | |- ( ( ( ph /\ k e. Z ) /\ x e. S ) -> ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) = A ) |
| 54 | 53 | itgeq2dv | |- ( ( ph /\ k e. Z ) -> S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) _d x = S. S A _d x ) |
| 55 | 54 | mpteq2dva | |- ( ph -> ( k e. Z |-> S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` k ) ` x ) _d x ) = ( k e. Z |-> S. S A _d x ) ) |
| 56 | 30 55 | eqtrid | |- ( ph -> ( n e. Z |-> S. S ( ( ( k e. Z |-> ( x e. S |-> A ) ) ` n ) ` z ) _d z ) = ( k e. Z |-> S. S A _d x ) ) |
| 57 | fveq2 | |- ( z = x -> ( ( x e. S |-> B ) ` z ) = ( ( x e. S |-> B ) ` x ) ) |
|
| 58 | nffvmpt1 | |- F/_ x ( ( x e. S |-> B ) ` z ) |
|
| 59 | nfcv | |- F/_ z ( ( x e. S |-> B ) ` x ) |
|
| 60 | 57 58 59 | cbvitg | |- S. S ( ( x e. S |-> B ) ` z ) _d z = S. S ( ( x e. S |-> B ) ` x ) _d x |
| 61 | simpr | |- ( ( ph /\ x e. S ) -> x e. S ) |
|
| 62 | ulmcl | |- ( ( k e. Z |-> ( x e. S |-> A ) ) ( ~~>u ` S ) ( x e. S |-> B ) -> ( x e. S |-> B ) : S --> CC ) |
|
| 63 | 4 62 | syl | |- ( ph -> ( x e. S |-> B ) : S --> CC ) |
| 64 | 63 | fvmptelcdm | |- ( ( ph /\ x e. S ) -> B e. CC ) |
| 65 | eqid | |- ( x e. S |-> B ) = ( x e. S |-> B ) |
|
| 66 | 65 | fvmpt2 | |- ( ( x e. S /\ B e. CC ) -> ( ( x e. S |-> B ) ` x ) = B ) |
| 67 | 61 64 66 | syl2anc | |- ( ( ph /\ x e. S ) -> ( ( x e. S |-> B ) ` x ) = B ) |
| 68 | 67 | itgeq2dv | |- ( ph -> S. S ( ( x e. S |-> B ) ` x ) _d x = S. S B _d x ) |
| 69 | 60 68 | eqtrid | |- ( ph -> S. S ( ( x e. S |-> B ) ` z ) _d z = S. S B _d x ) |
| 70 | 8 56 69 | 3brtr3d | |- ( ph -> ( k e. Z |-> S. S A _d x ) ~~> S. S B _d x ) |
| 71 | 7 70 | jca | |- ( ph -> ( ( x e. S |-> B ) e. L^1 /\ ( k e. Z |-> S. S A _d x ) ~~> S. S B _d x ) ) |