This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for an integral: if y is (effectively) not free in A and B , it is not free in S. A B _d x . (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfitg.1 | |- F/_ y A |
|
| nfitg.2 | |- F/_ y B |
||
| Assertion | nfitg | |- F/_ y S. A B _d x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfitg.1 | |- F/_ y A |
|
| 2 | nfitg.2 | |- F/_ y B |
|
| 3 | eqid | |- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
|
| 4 | 3 | dfitg | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 5 | nfcv | |- F/_ y ( 0 ... 3 ) |
|
| 6 | nfcv | |- F/_ y ( _i ^ k ) |
|
| 7 | nfcv | |- F/_ y x. |
|
| 8 | nfcv | |- F/_ y S.2 |
|
| 9 | nfcv | |- F/_ y RR |
|
| 10 | 1 | nfcri | |- F/ y x e. A |
| 11 | nfcv | |- F/_ y 0 |
|
| 12 | nfcv | |- F/_ y <_ |
|
| 13 | nfcv | |- F/_ y Re |
|
| 14 | nfcv | |- F/_ y / |
|
| 15 | 2 14 6 | nfov | |- F/_ y ( B / ( _i ^ k ) ) |
| 16 | 13 15 | nffv | |- F/_ y ( Re ` ( B / ( _i ^ k ) ) ) |
| 17 | 11 12 16 | nfbr | |- F/ y 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) |
| 18 | 10 17 | nfan | |- F/ y ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) |
| 19 | 18 16 11 | nfif | |- F/_ y if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) |
| 20 | 9 19 | nfmpt | |- F/_ y ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) |
| 21 | 8 20 | nffv | |- F/_ y ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) |
| 22 | 6 7 21 | nfov | |- F/_ y ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 23 | 5 22 | nfsum | |- F/_ y sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 24 | 4 23 | nfcxfr | |- F/_ y S. A B _d x |