This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand out the sum in dfitg . (Contributed by Mario Carneiro, 1-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcnlem.r | |- R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
|
| itgcnlem.s | |- S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) |
||
| itgcnlem.t | |- T = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) |
||
| itgcnlem.u | |- U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) |
||
| itgcnlem.v | |- ( ( ph /\ x e. A ) -> B e. V ) |
||
| itgcnlem.i | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
||
| Assertion | itgcnlem | |- ( ph -> S. A B _d x = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcnlem.r | |- R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
|
| 2 | itgcnlem.s | |- S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) |
|
| 3 | itgcnlem.t | |- T = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) |
|
| 4 | itgcnlem.u | |- U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) |
|
| 5 | itgcnlem.v | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 6 | itgcnlem.i | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
|
| 7 | eqid | |- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
|
| 8 | 7 | dfitg | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 9 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 10 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 11 | oveq2 | |- ( k = 3 -> ( _i ^ k ) = ( _i ^ 3 ) ) |
|
| 12 | i3 | |- ( _i ^ 3 ) = -u _i |
|
| 13 | 11 12 | eqtrdi | |- ( k = 3 -> ( _i ^ k ) = -u _i ) |
| 14 | 12 | itgvallem | |- ( k = 3 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
| 15 | 13 14 | oveq12d | |- ( k = 3 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) |
| 16 | ax-icn | |- _i e. CC |
|
| 17 | 16 | a1i | |- ( ph -> _i e. CC ) |
| 18 | expcl | |- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
|
| 19 | 17 18 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
| 20 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 21 | eqidd | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) |
|
| 22 | eqidd | |- ( ( ph /\ x e. A ) -> ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) ) |
|
| 23 | 21 22 6 5 | iblitg | |- ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
| 24 | 23 | recnd | |- ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) |
| 25 | 20 24 | sylan2 | |- ( ( ph /\ k e. NN0 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) |
| 26 | 19 25 | mulcld | |- ( ( ph /\ k e. NN0 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) e. CC ) |
| 27 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 28 | oveq2 | |- ( k = 2 -> ( _i ^ k ) = ( _i ^ 2 ) ) |
|
| 29 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 30 | 28 29 | eqtrdi | |- ( k = 2 -> ( _i ^ k ) = -u 1 ) |
| 31 | 29 | itgvallem | |- ( k = 2 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
| 32 | 30 31 | oveq12d | |- ( k = 2 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) |
| 33 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 34 | oveq2 | |- ( k = 1 -> ( _i ^ k ) = ( _i ^ 1 ) ) |
|
| 35 | exp1 | |- ( _i e. CC -> ( _i ^ 1 ) = _i ) |
|
| 36 | 16 35 | ax-mp | |- ( _i ^ 1 ) = _i |
| 37 | 34 36 | eqtrdi | |- ( k = 1 -> ( _i ^ k ) = _i ) |
| 38 | 36 | itgvallem | |- ( k = 1 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) |
| 39 | 37 38 | oveq12d | |- ( k = 1 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) ) |
| 40 | 0z | |- 0 e. ZZ |
|
| 41 | iblmbf | |- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
|
| 42 | 6 41 | syl | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
| 43 | 42 5 | mbfmptcl | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 44 | 43 | div1d | |- ( ( ph /\ x e. A ) -> ( B / 1 ) = B ) |
| 45 | 44 | fveq2d | |- ( ( ph /\ x e. A ) -> ( Re ` ( B / 1 ) ) = ( Re ` B ) ) |
| 46 | 45 | ibllem | |- ( ph -> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) |
| 47 | 46 | mpteq2dv | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) |
| 48 | 47 | fveq2d | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) ) |
| 49 | 1 48 | eqtr4id | |- ( ph -> R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) |
| 50 | 49 | oveq2d | |- ( ph -> ( 1 x. R ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
| 51 | 1 2 3 4 5 | iblcnlem | |- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( R e. RR /\ S e. RR ) /\ ( T e. RR /\ U e. RR ) ) ) ) |
| 52 | 6 51 | mpbid | |- ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( R e. RR /\ S e. RR ) /\ ( T e. RR /\ U e. RR ) ) ) |
| 53 | 52 | simp2d | |- ( ph -> ( R e. RR /\ S e. RR ) ) |
| 54 | 53 | simpld | |- ( ph -> R e. RR ) |
| 55 | 54 | recnd | |- ( ph -> R e. CC ) |
| 56 | 55 | mullidd | |- ( ph -> ( 1 x. R ) = R ) |
| 57 | 50 56 | eqtr3d | |- ( ph -> ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) = R ) |
| 58 | 57 55 | eqeltrd | |- ( ph -> ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) e. CC ) |
| 59 | oveq2 | |- ( k = 0 -> ( _i ^ k ) = ( _i ^ 0 ) ) |
|
| 60 | exp0 | |- ( _i e. CC -> ( _i ^ 0 ) = 1 ) |
|
| 61 | 16 60 | ax-mp | |- ( _i ^ 0 ) = 1 |
| 62 | 59 61 | eqtrdi | |- ( k = 0 -> ( _i ^ k ) = 1 ) |
| 63 | 61 | itgvallem | |- ( k = 0 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) |
| 64 | 62 63 | oveq12d | |- ( k = 0 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
| 65 | 64 | fsum1 | |- ( ( 0 e. ZZ /\ ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
| 66 | 40 58 65 | sylancr | |- ( ph -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) |
| 67 | 66 57 | eqtrd | |- ( ph -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = R ) |
| 68 | 0nn0 | |- 0 e. NN0 |
|
| 69 | 67 68 | jctil | |- ( ph -> ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = R ) ) |
| 70 | imval | |- ( B e. CC -> ( Im ` B ) = ( Re ` ( B / _i ) ) ) |
|
| 71 | 43 70 | syl | |- ( ( ph /\ x e. A ) -> ( Im ` B ) = ( Re ` ( B / _i ) ) ) |
| 72 | 71 | ibllem | |- ( ph -> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) |
| 73 | 72 | mpteq2dv | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) |
| 74 | 73 | fveq2d | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) |
| 75 | 3 74 | eqtr2id | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) = T ) |
| 76 | 75 | oveq2d | |- ( ph -> ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) = ( _i x. T ) ) |
| 77 | 76 | oveq2d | |- ( ph -> ( R + ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) ) = ( R + ( _i x. T ) ) ) |
| 78 | 9 33 39 26 69 77 | fsump1i | |- ( ph -> ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( R + ( _i x. T ) ) ) ) |
| 79 | 43 | renegd | |- ( ( ph /\ x e. A ) -> ( Re ` -u B ) = -u ( Re ` B ) ) |
| 80 | ax-1cn | |- 1 e. CC |
|
| 81 | 80 | negnegi | |- -u -u 1 = 1 |
| 82 | 81 | oveq2i | |- ( -u B / -u -u 1 ) = ( -u B / 1 ) |
| 83 | 43 | negcld | |- ( ( ph /\ x e. A ) -> -u B e. CC ) |
| 84 | 83 | div1d | |- ( ( ph /\ x e. A ) -> ( -u B / 1 ) = -u B ) |
| 85 | 82 84 | eqtrid | |- ( ( ph /\ x e. A ) -> ( -u B / -u -u 1 ) = -u B ) |
| 86 | 80 | negcli | |- -u 1 e. CC |
| 87 | neg1ne0 | |- -u 1 =/= 0 |
|
| 88 | div2neg | |- ( ( B e. CC /\ -u 1 e. CC /\ -u 1 =/= 0 ) -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
|
| 89 | 86 87 88 | mp3an23 | |- ( B e. CC -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
| 90 | 43 89 | syl | |- ( ( ph /\ x e. A ) -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) |
| 91 | 85 90 | eqtr3d | |- ( ( ph /\ x e. A ) -> -u B = ( B / -u 1 ) ) |
| 92 | 91 | fveq2d | |- ( ( ph /\ x e. A ) -> ( Re ` -u B ) = ( Re ` ( B / -u 1 ) ) ) |
| 93 | 79 92 | eqtr3d | |- ( ( ph /\ x e. A ) -> -u ( Re ` B ) = ( Re ` ( B / -u 1 ) ) ) |
| 94 | 93 | ibllem | |- ( ph -> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) |
| 95 | 94 | mpteq2dv | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) |
| 96 | 95 | fveq2d | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
| 97 | 2 96 | eqtrid | |- ( ph -> S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) |
| 98 | 97 | oveq2d | |- ( ph -> ( -u 1 x. S ) = ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) |
| 99 | 53 | simprd | |- ( ph -> S e. RR ) |
| 100 | 99 | recnd | |- ( ph -> S e. CC ) |
| 101 | 100 | mulm1d | |- ( ph -> ( -u 1 x. S ) = -u S ) |
| 102 | 98 101 | eqtr3d | |- ( ph -> ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) = -u S ) |
| 103 | 102 | oveq2d | |- ( ph -> ( ( R + ( _i x. T ) ) + ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) = ( ( R + ( _i x. T ) ) + -u S ) ) |
| 104 | 52 | simp3d | |- ( ph -> ( T e. RR /\ U e. RR ) ) |
| 105 | 104 | simpld | |- ( ph -> T e. RR ) |
| 106 | 105 | recnd | |- ( ph -> T e. CC ) |
| 107 | mulcl | |- ( ( _i e. CC /\ T e. CC ) -> ( _i x. T ) e. CC ) |
|
| 108 | 16 106 107 | sylancr | |- ( ph -> ( _i x. T ) e. CC ) |
| 109 | 55 108 | addcld | |- ( ph -> ( R + ( _i x. T ) ) e. CC ) |
| 110 | 109 100 | negsubd | |- ( ph -> ( ( R + ( _i x. T ) ) + -u S ) = ( ( R + ( _i x. T ) ) - S ) ) |
| 111 | 55 108 100 | addsubd | |- ( ph -> ( ( R + ( _i x. T ) ) - S ) = ( ( R - S ) + ( _i x. T ) ) ) |
| 112 | 103 110 111 | 3eqtrd | |- ( ph -> ( ( R + ( _i x. T ) ) + ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) = ( ( R - S ) + ( _i x. T ) ) ) |
| 113 | 9 27 32 26 78 112 | fsump1i | |- ( ph -> ( 2 e. NN0 /\ sum_ k e. ( 0 ... 2 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( R - S ) + ( _i x. T ) ) ) ) |
| 114 | imval | |- ( -u B e. CC -> ( Im ` -u B ) = ( Re ` ( -u B / _i ) ) ) |
|
| 115 | 83 114 | syl | |- ( ( ph /\ x e. A ) -> ( Im ` -u B ) = ( Re ` ( -u B / _i ) ) ) |
| 116 | 43 | imnegd | |- ( ( ph /\ x e. A ) -> ( Im ` -u B ) = -u ( Im ` B ) ) |
| 117 | 16 | negnegi | |- -u -u _i = _i |
| 118 | 117 | eqcomi | |- _i = -u -u _i |
| 119 | 118 | oveq2i | |- ( -u B / _i ) = ( -u B / -u -u _i ) |
| 120 | 16 | negcli | |- -u _i e. CC |
| 121 | ine0 | |- _i =/= 0 |
|
| 122 | 16 121 | negne0i | |- -u _i =/= 0 |
| 123 | div2neg | |- ( ( B e. CC /\ -u _i e. CC /\ -u _i =/= 0 ) -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
|
| 124 | 120 122 123 | mp3an23 | |- ( B e. CC -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
| 125 | 43 124 | syl | |- ( ( ph /\ x e. A ) -> ( -u B / -u -u _i ) = ( B / -u _i ) ) |
| 126 | 119 125 | eqtrid | |- ( ( ph /\ x e. A ) -> ( -u B / _i ) = ( B / -u _i ) ) |
| 127 | 126 | fveq2d | |- ( ( ph /\ x e. A ) -> ( Re ` ( -u B / _i ) ) = ( Re ` ( B / -u _i ) ) ) |
| 128 | 115 116 127 | 3eqtr3d | |- ( ( ph /\ x e. A ) -> -u ( Im ` B ) = ( Re ` ( B / -u _i ) ) ) |
| 129 | 128 | ibllem | |- ( ph -> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) |
| 130 | 129 | mpteq2dv | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) |
| 131 | 130 | fveq2d | |- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
| 132 | 4 131 | eqtrid | |- ( ph -> U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) |
| 133 | 132 | oveq2d | |- ( ph -> ( -u _i x. U ) = ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) |
| 134 | 104 | simprd | |- ( ph -> U e. RR ) |
| 135 | 134 | recnd | |- ( ph -> U e. CC ) |
| 136 | mulneg12 | |- ( ( _i e. CC /\ U e. CC ) -> ( -u _i x. U ) = ( _i x. -u U ) ) |
|
| 137 | 16 135 136 | sylancr | |- ( ph -> ( -u _i x. U ) = ( _i x. -u U ) ) |
| 138 | 133 137 | eqtr3d | |- ( ph -> ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) = ( _i x. -u U ) ) |
| 139 | 138 | oveq2d | |- ( ph -> ( ( ( R - S ) + ( _i x. T ) ) + ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
| 140 | 9 10 15 26 113 139 | fsump1i | |- ( ph -> ( 3 e. NN0 /\ sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) ) |
| 141 | 140 | simprd | |- ( ph -> sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
| 142 | 8 141 | eqtrid | |- ( ph -> S. A B _d x = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) |
| 143 | 55 100 | subcld | |- ( ph -> ( R - S ) e. CC ) |
| 144 | 135 | negcld | |- ( ph -> -u U e. CC ) |
| 145 | mulcl | |- ( ( _i e. CC /\ -u U e. CC ) -> ( _i x. -u U ) e. CC ) |
|
| 146 | 16 144 145 | sylancr | |- ( ph -> ( _i x. -u U ) e. CC ) |
| 147 | 143 108 146 | addassd | |- ( ph -> ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) = ( ( R - S ) + ( ( _i x. T ) + ( _i x. -u U ) ) ) ) |
| 148 | 17 106 144 | adddid | |- ( ph -> ( _i x. ( T + -u U ) ) = ( ( _i x. T ) + ( _i x. -u U ) ) ) |
| 149 | 106 135 | negsubd | |- ( ph -> ( T + -u U ) = ( T - U ) ) |
| 150 | 149 | oveq2d | |- ( ph -> ( _i x. ( T + -u U ) ) = ( _i x. ( T - U ) ) ) |
| 151 | 148 150 | eqtr3d | |- ( ph -> ( ( _i x. T ) + ( _i x. -u U ) ) = ( _i x. ( T - U ) ) ) |
| 152 | 151 | oveq2d | |- ( ph -> ( ( R - S ) + ( ( _i x. T ) + ( _i x. -u U ) ) ) = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) |
| 153 | 142 147 152 | 3eqtrd | |- ( ph -> S. A B _d x = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) |