This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgvallem.1 | |- ( _i ^ K ) = T |
|
| Assertion | itgvallem | |- ( k = K -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / T ) ) ) , ( Re ` ( B / T ) ) , 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgvallem.1 | |- ( _i ^ K ) = T |
|
| 2 | oveq2 | |- ( k = K -> ( _i ^ k ) = ( _i ^ K ) ) |
|
| 3 | 2 1 | eqtrdi | |- ( k = K -> ( _i ^ k ) = T ) |
| 4 | 3 | oveq2d | |- ( k = K -> ( B / ( _i ^ k ) ) = ( B / T ) ) |
| 5 | 4 | fveq2d | |- ( k = K -> ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / T ) ) ) |
| 6 | 5 | breq2d | |- ( k = K -> ( 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) <-> 0 <_ ( Re ` ( B / T ) ) ) ) |
| 7 | 6 | anbi2d | |- ( k = K -> ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) <-> ( x e. A /\ 0 <_ ( Re ` ( B / T ) ) ) ) ) |
| 8 | 7 5 | ifbieq1d | |- ( k = K -> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / T ) ) ) , ( Re ` ( B / T ) ) , 0 ) ) |
| 9 | 8 | mpteq2dv | |- ( k = K -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / T ) ) ) , ( Re ` ( B / T ) ) , 0 ) ) ) |
| 10 | 9 | fveq2d | |- ( k = K -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / T ) ) ) , ( Re ` ( B / T ) ) , 0 ) ) ) ) |