This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ibllem.1 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
| Assertion | ibllem | |- ( ph -> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) = if ( ( x e. A /\ 0 <_ C ) , C , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibllem.1 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
| 2 | 1 | breq2d | |- ( ( ph /\ x e. A ) -> ( 0 <_ B <-> 0 <_ C ) ) |
| 3 | 2 | pm5.32da | |- ( ph -> ( ( x e. A /\ 0 <_ B ) <-> ( x e. A /\ 0 <_ C ) ) ) |
| 4 | 3 | ifbid | |- ( ph -> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) = if ( ( x e. A /\ 0 <_ C ) , B , 0 ) ) |
| 5 | 1 | adantrr | |- ( ( ph /\ ( x e. A /\ 0 <_ C ) ) -> B = C ) |
| 6 | 5 | ifeq1da | |- ( ph -> if ( ( x e. A /\ 0 <_ C ) , B , 0 ) = if ( ( x e. A /\ 0 <_ C ) , C , 0 ) ) |
| 7 | 4 6 | eqtrd | |- ( ph -> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) = if ( ( x e. A /\ 0 <_ C ) , C , 0 ) ) |