This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quotient of two negatives. (Contributed by Paul Chapman, 10-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div2neg | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u A / -u B ) = ( A / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u B e. CC ) |
| 3 | simp1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
|
| 4 | simp2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
|
| 5 | simp3 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B =/= 0 ) |
|
| 6 | div12 | |- ( ( -u B e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u B x. ( A / B ) ) = ( A x. ( -u B / B ) ) ) |
|
| 7 | 2 3 4 5 6 | syl112anc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u B x. ( A / B ) ) = ( A x. ( -u B / B ) ) ) |
| 8 | divneg | |- ( ( B e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( B / B ) = ( -u B / B ) ) |
|
| 9 | 4 8 | syld3an1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( B / B ) = ( -u B / B ) ) |
| 10 | divid | |- ( ( B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 ) |
|
| 11 | 10 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 ) |
| 12 | 11 | negeqd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u ( B / B ) = -u 1 ) |
| 13 | 9 12 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u B / B ) = -u 1 ) |
| 14 | 13 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. ( -u B / B ) ) = ( A x. -u 1 ) ) |
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | 15 | negcli | |- -u 1 e. CC |
| 17 | mulcom | |- ( ( A e. CC /\ -u 1 e. CC ) -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
|
| 18 | 16 17 | mpan2 | |- ( A e. CC -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
| 19 | mulm1 | |- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
|
| 20 | 18 19 | eqtrd | |- ( A e. CC -> ( A x. -u 1 ) = -u A ) |
| 21 | 20 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. -u 1 ) = -u A ) |
| 22 | 14 21 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A x. ( -u B / B ) ) = -u A ) |
| 23 | 7 22 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u B x. ( A / B ) ) = -u A ) |
| 24 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u A e. CC ) |
| 26 | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
|
| 27 | negeq0 | |- ( B e. CC -> ( B = 0 <-> -u B = 0 ) ) |
|
| 28 | 27 | necon3bid | |- ( B e. CC -> ( B =/= 0 <-> -u B =/= 0 ) ) |
| 29 | 28 | biimpa | |- ( ( B e. CC /\ B =/= 0 ) -> -u B =/= 0 ) |
| 30 | 29 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> -u B =/= 0 ) |
| 31 | divmul | |- ( ( -u A e. CC /\ ( A / B ) e. CC /\ ( -u B e. CC /\ -u B =/= 0 ) ) -> ( ( -u A / -u B ) = ( A / B ) <-> ( -u B x. ( A / B ) ) = -u A ) ) |
|
| 32 | 25 26 2 30 31 | syl112anc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( -u A / -u B ) = ( A / B ) <-> ( -u B x. ( A / B ) ) = -u A ) ) |
| 33 | 23 32 | mpbird | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( -u A / -u B ) = ( A / B ) ) |