This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for elementhood in the set L . (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itg2val.1 | |- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| Assertion | itg2lr | |- ( ( G e. dom S.1 /\ G oR <_ F ) -> ( S.1 ` G ) e. L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | |- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| 2 | eqid | |- ( S.1 ` G ) = ( S.1 ` G ) |
|
| 3 | breq1 | |- ( g = G -> ( g oR <_ F <-> G oR <_ F ) ) |
|
| 4 | fveq2 | |- ( g = G -> ( S.1 ` g ) = ( S.1 ` G ) ) |
|
| 5 | 4 | eqeq2d | |- ( g = G -> ( ( S.1 ` G ) = ( S.1 ` g ) <-> ( S.1 ` G ) = ( S.1 ` G ) ) ) |
| 6 | 3 5 | anbi12d | |- ( g = G -> ( ( g oR <_ F /\ ( S.1 ` G ) = ( S.1 ` g ) ) <-> ( G oR <_ F /\ ( S.1 ` G ) = ( S.1 ` G ) ) ) ) |
| 7 | 6 | rspcev | |- ( ( G e. dom S.1 /\ ( G oR <_ F /\ ( S.1 ` G ) = ( S.1 ` G ) ) ) -> E. g e. dom S.1 ( g oR <_ F /\ ( S.1 ` G ) = ( S.1 ` g ) ) ) |
| 8 | 2 7 | mpanr2 | |- ( ( G e. dom S.1 /\ G oR <_ F ) -> E. g e. dom S.1 ( g oR <_ F /\ ( S.1 ` G ) = ( S.1 ` g ) ) ) |
| 9 | 1 | itg2l | |- ( ( S.1 ` G ) e. L <-> E. g e. dom S.1 ( g oR <_ F /\ ( S.1 ` G ) = ( S.1 ` g ) ) ) |
| 10 | 8 9 | sylibr | |- ( ( G e. dom S.1 /\ G oR <_ F ) -> ( S.1 ` G ) e. L ) |