This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itg2val.1 | |- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| Assertion | itg2val | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) = sup ( L , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | |- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| 2 | xrltso | |- < Or RR* |
|
| 3 | 2 | supex | |- sup ( L , RR* , < ) e. _V |
| 4 | reex | |- RR e. _V |
|
| 5 | ovex | |- ( 0 [,] +oo ) e. _V |
|
| 6 | breq2 | |- ( f = F -> ( g oR <_ f <-> g oR <_ F ) ) |
|
| 7 | 6 | anbi1d | |- ( f = F -> ( ( g oR <_ f /\ x = ( S.1 ` g ) ) <-> ( g oR <_ F /\ x = ( S.1 ` g ) ) ) ) |
| 8 | 7 | rexbidv | |- ( f = F -> ( E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) <-> E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) ) ) |
| 9 | 8 | abbidv | |- ( f = F -> { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } ) |
| 10 | 9 1 | eqtr4di | |- ( f = F -> { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } = L ) |
| 11 | 10 | supeq1d | |- ( f = F -> sup ( { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } , RR* , < ) = sup ( L , RR* , < ) ) |
| 12 | df-itg2 | |- S.2 = ( f e. ( ( 0 [,] +oo ) ^m RR ) |-> sup ( { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
|
| 13 | 3 4 5 11 12 | fvmptmap | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) = sup ( L , RR* , < ) ) |